A Handbook of Spectroscopic Data **Chemistry** (UV, IR, PMR,³CNMR and

Mass Spectroscopy)

B.D.Mistry

A Handbook of Spectroscopic Data **CHEMISTRY**

(UV, IR, PMR, ¹³CNMR and Mass Spectroscopy)

B.D. Mistry

B.K.M. Science College, Valsad - (Gujarat)

Jaipur, India

ISBN: 978-81-89473-86-0

Edition 2009

Oxford Book Company

267, 10-B-Scheme. Opp. Narayan Niwas, Gopalpura By Pass Road, Jaipur-302018 Phone: 0141-2594705, Fax: 0141-2597527 e-mail: oxfordbook@sify.com website: www.oxfordbookcompany.com

© Reserved

Typeset by : Shivangi Computers 267, 10-B-Scheme, Opp. Narayan Niwas, Gopalpura By Pass Road, Jaipur-302018

Printed at : • Mehra Offset Printers, Delhi.

All Rights are Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, without the prior written permission of the copyright owner. Responsibility for the facts stated, opinions expressed, conclusions reached and plagiarism, if any, in this volume is entirely that of the Author, according to whom the matter encompassed in this book has been originally created/edited and resemblance with any such publication may be incidental. The Publisher bears no responsibility for them, whatsoever.

Contents

1.	Ultraviolet Spectroscopy	1
2.	Infrared Spectroscopy	26
3.	Proton Magnetic Resonance Spectroscopy	64
4.	¹³ C NMR Spectroscopy	99
5.	Mass Spectrometry	128
6.	Structural Data Obtainable from Different Spectra	237
	Index	240

"This page is Intentionally Left Blank"

1

Ultraviolet Spectroscopy

1.1 Calculating Absorption Maxima of Unsaturated Compounds

Dienes and trienes : If the compound is suspected to be a conjugated or substituted diene, its wavelength of maximum absorption can be predicted with the help of Table 1. 1. To be able to use this table, one must first learn to recognize different types of dienes, conjugations, double bonds, etc. These are as follows:

A linear conjugation; for example, 1,3,5 hexatriene, isoprene,etc.

A cross conjugation.

A cyclic diene; for example, cyclohexadiene, cyclohepta 1,3- diene, etc.

A semicyclic diene; one of the double bonds forms part of a ring and the other is exocyclic, or outside the ring. When only one of of the two sp^2 hybridized carbons of a double bond is a part of the ring under consideration, such a double bond is called an exocyclic double bond.

A homoannular diene is one in which the two double bonds are conjugated and are in a single ring.

Note that both double bonds are exocyclic to ring B.

A heteroannular diene is a conjugated system in which the two double bonds belong to two different rings. However, these double bonds are also exocyclic, one of them being exoto ring A and the other exo-to ring B.

Table 1.1: Woodward's and Fieser's rules for Diene absorption (ethanol solution)

i)	Base value for an unsubstituted, conjugated, acyclic or	
	heteroannular diene	214 nm
ii)	Base value for an unsubstituted, conjugated	
	homoannular diene	253 nm
	Increments for	
iii)	Extra double bonds in conjugation (for each C=C)	+ 30 nm
iv)	Exocyclic double bond (effect is two fold if bond is	
	exocylic to two rings)	+5nm
v)	Substitutents on sp ² hybridised carbon atom, per substituent	nt
	a) O-acyl (-O-CO-R or -O-CO-Ar)	0 nm
	b) Simple alkyl (-R) or ring residue	+5nm
	c) Halogen (-Cl, -Br)	+5nm
	d) Oalkyl (-OR)	+6nm
	e) S–alkyl (–SR)	+ 30 nm
	f) N-alkyl, (-NRR')	+ 60 nm
vi)	Solvent correction	0 nm

vi) A B

The following points are to be noted:

• The cyclic homoannular base values refer to a six membered ring only. For other rings the values are:

Five membered ring (C_5)	228 nm
------------------------------	--------

- Seven membered ring (C_7) 241 nm
- Accuracy of prediction is ± 5 nm
- If there is more than one possibility for calculating λ max, the highest λ_{max} value usually agrees with the observed value.

Limitations

- Agreement is quite good for acyclic and six-membered ring polyenes but not so for other rings in some cases.
- Steric strain can also affect the position (λmax) of the band, sometimes very greatly if the strain is high. A simple example of this is 1, 2 dimethylene cyclohexane, which gives a strong UV band at λmax 220 nm (∈ 10,050) which is quite different from the calcualted value.

Polyenes : The above rules (Table 1.1) holds fairly well for unsaturated compounds containing up to four conjugated double bonds. However, for systems of extended conjugation, such as those found in carotenoid pigments, Fieser and Kuhn have suggested equations to calculate the basic λ max and \in_{max} of UV absorption.

 λ_{max} (in hexane) = 114 + 5M + n (48.0 - 1.7n) - 16.5R_{endo} - 10R_{exo} \in_{max} (in hexane) = 1.74 x 10⁴n

Where

n = number of conjugated double bonds

M = number of alkyl or alkyl like substituents on the conjugated system.

 R_{endo} = number of rings with endocyclic double bonds in the conjugated system.

 R_{exo} = number of rings with exocyclic double bonds.

1.2 Calculating Absorption Maxima of Carbonyl Compounds

The basic chromophore containing a >C=C< (-ene) conjugated with a >C=O (-one), as in

,

 $> \overset{\beta}{C} = \overset{\alpha}{C} - C = O$ is called an enone. If a carbonyl group is conjugated with two double bonds (-diene), such as

$$> \overset{\delta}{C} = \overset{\gamma}{C} - \overset{\beta}{C} = \overset{\alpha}{C} - C = O$$

The compound is known as a dienone. In the case of cyclic compounds, the ethylenic double bonds conjugated with the carbonyl may be homoannular or heteroannular.

Table 1.2: Rules of Enone and Dienone absorption

βαΖ	δ	γ	β	α	Ζ	
	1	1		1		
$\beta - C = C - C = O \text{and} $	δ – C =	= C -	- C =	= C -	-C = C)
Enone		Ľ	Dieno	one		
Z = C, enone, $Z = H$, aldehyde						
Z = OH, ac	d, Z = 0	DR, e	ester			

Parent enone (acyclic or rings larg	er than 5 members)	215nm
5-membered cyclic enone		205nm
Aldehydes		210nm
Acid and Esters		195nm
Increments for Double bond exten	ding conjugation (for each one)	+ 30nm
Homodiene component		+ 39nm
Exocyclic double bond (or any >C	=C< endocyclic to 5- or 7-	
member ring in a case of acid and	ester)	+ 5nm
Alkyl group, ring residue	α	+ 10nm
	β	+ 12nm
	γ	
a	nd higher	+ 18nm
Hydroxyl (–OH)	α	+ 35nm
	β	+ 30nm
	γ	50nm
Alkoxyl (–OCH ₃)	α	+ 35nm
, j	β	+ 30nm
	γ	+ 17nm
	δ	31nm

Acetoxyl (-O-COCH ₃)	α, β or δ	⊦ 6nm
Dialkyl aniino (–NR,)	β	+ 95nm
Chlorine (–Cl)	α	+ 15nm
	β	+ 12nm
Thioalkyl (-SR)	β	+ 85nm
Bromine (-Br)	α	+ 25nm
	β	+ 30nm
Solvent correction (see ta	ble below)	variable

Solvent Corrections (Enones)		
Solvent	Correction	
Ethanol	0	
Methanol	0	
Water	-8 nm	
Chloroform	+ 1 nm	
Dioxane	+ 5 nm	
Ether	+ 7 nm	
Hexane	+ 11 nm	
Cyclohexane	+ 11 nm	

Accuracy of prediction \pm 5 nm.

1.3 Calculating Absorption Maxima of Aromatic Molecules

There are two types of aromatic molecules: benzenoid and nonbenzenoid. Their spectra show considerable resemblance. In fact, the presence or absence of certain features in UV spectra, such as a low intensity band (known as a fine structure band) at or about 255 nm, is often used to detect the aromatic character of an unknown substance.

Benzene Chromophore

The simplest aromatic compound is benzene. It has a ring current of π electrons, which shows strong $\pi \to \pi^*$ absorptions at 184 nm (\in_{max} 60,000), and at 204 nm (\in_{max} 7900). (This is called a primary band.) Benzene exhibits a low intensity band at 256 nm (\in_{max} 200) (Known as a secondary or fine-structure band), with a series of fine-structure bands between 230 and 270 nm). Any substitution on the benzene ring, irrespective of its electronic character

(electron-donating or electron-withdrawing character) shift the primary band (204 nm) to longer wave lengths. With polar substituents, e.g. $-NR_2$, -OH, etc. which allow for the $n \rightarrow \pi$ conjugation and -C = 0 and $-NO_2$ where polarisability is of importance, absorption due to electron transfer transitions is apparent. These two types of transfer can be expressed as shown below:

Chromophore substitutents:

Auxochrome substituents:

Table 1.3: Scotts rules for calculation of λ max of the ET (electron transfer) band of aromatic carbonyl compounds

m---

p-

Ar-C-Z || O

Parent chromophore : $Ar=C_6H_5$ Z = Alkyl or ring residue, (e.g.; ArCOR) 246 nm Z = H, (Ar CHO) 250 nm Z = OH, OAlk, (ArCOOH and ArCOOR)230 nm Increment for each substitutent on Ar: Alkyl or ring residue o-, m-+3 nm+ 10 nm p-- OH, -OAlk + 7 nm o-, m-+ 25 nm p- O^- (oxyanion) • + 11 nm 0-

In heterocyclic chemistry model compounds are essential for the interpretation of most spectra. No rules are available for the predicition of the wavelength maxima of aromatic compounds except in the case of aromatic carbonyl compounds where acetophenone is taken as the parent chromophore, and + 20 nm increments allotted on the + 78 nm^a usual basis (Table 1.3)

Ultraviolet Spectroscopy

	Cl	o, m	+ 0 nm
		p–	+ 10 nm
	Br	o, m	+ 2 nm
		р	+ 15 nm
-	NH ₂	0, m	+ 13 nm
		p –	+ 58 nm
	NHCOCH ₃	0-, m-	+ 20 nm
		p-	+ 45 nm
-	NHCH ₃	P	+ 73 nm
-	N(CH ₃) ₂	0-, m-	+ 20 nm
		p	+ 85 nm

^aThis value may be decreased markedly by steric hindrance to coplanarity.

Let us now apply the rules in Table 1.1, 1.2, and 1.3 to a few known compounds and compare the resulting values of λ_{max} with the values observed experimentally.

I. Dienes

(1) Abietic acid

Basic heteroannular diene	214 nm
Exocyclic double bonds (1×5)	05 nm
Substituents R (4 \times 5)	20 nm
Calculated λ max	239 nm
Observed	241 nm
Chromonhous is shown by heavy lines would	un indianto quinctituanto 1

(2) Ergosterol

Basic homoannular diene	253 nm
Exocyclic double bonds (2×5)	10 nm
Substituents R (4×5)	20 nm
Calculated λmax	283 nm
Observed	282 nm

3. 3, β -Acetoxyergosta-5,7,14,22-tetraene

In compounds containing both homoannular and heteroannular double bonds, the diene system which requires least energy for excitation (i.e. the one with the longer wavelength of absorption) is used as a base.

Basic homoannular diene	253 nm
Exocyclic double bonds (3×5)	15 nm
Substituents R (5×5)	25 nm
Extra double bond in conjugation	30 nm
Calculated λ max	323 nm
Observed	319 nm

II. Polyenes

Basic λmax value	114 nm
$M =$ number of alkyl substituents, 5×10 add	50 nm
n = number of conjugated double bonds,	
$11 \times [48 - (1.7 \times 11)]$ add	322.3 nm
$R_{endo} =$ number of rings with endocyclic double bonds,	
2×16.5 , substract	33.0 nm
R_{exo} = number of rings with exocyclic double bonds,	
0×10 , substract	00.0 nm
Calculated λmax	453.30 nm
Observed	452.00 nm
$\epsilon_{\rm max} = 1.74 \times 11 \times 10^4$	
$= 19.1 \times 10^4$ (calculated)	
$= 15.2 \times 10^4 (\text{observed}^*)$	

* The equation for calculating \in_{max} is semi-empirical, the value calculated does not always correspond well with the observed value.

(2) All trans lycopene

Basic λmax		114 nm
$M = 5 \times 8$	add	40 nm
$n = 11 \times 148 - (1.7 \times 11)$	add	322.3 nm

(Note: Double bonds at ends are not in conjugation with others)

R _{endo}	substract	00.0 nm
R _{exo}	substract	00.0 nm
	Calculated λ max	476.30 nm
	Observed	474.00 nm
∈ = 1.74 × 11 ∶	< 10 ⁴	

= 19.1×10^4 (calculated)

= 18.6×10^4 (observed)

III. Enones

(1) Cholest-4-en-3-one

Parent base	215 nm
Substituents β , β (2 × 12) add	24 nm
Exocyclic = C < add	05 nm
Calculated λ_{max}^{EtOH}	244 nm
Observed	241 nm

(2) Cholesta-2,4-dien-6-one

Parent base		215 nm
Extended conjugation	add	30 nm
Homoannular component	add	39 nm
Substituents α (1 × 10)	add	10 nm
δ (1 × 18)	add	18 nm
Calculated λ_{max}^{EtOH}		312 nm
Observed		314 nm

(3) 3, β-Acetoxy-7-oxolanosta-5,18,11-triene

٠

Parent base		215 nm
Extended conjugation	add	30 nm
Homoannular component	add	¹ 39 nm
Exocyclic double bond	add	5 nm
Substituents α (1 × 10)	add	10 nm
β(1 × 12)	add	12 nm
δ(1 × 18)	add	18 nm
Calculated	λ_{\max}^{EtOH}	329 nm
Observed		327 nm

(4) Cycloheptene-1-carboxylic acid

Parent base		195 nm
Substituents α (1 × 10)	add	10 nm
β (1 × 12)	add	12 nm
C=C endocyclic to 7-member ring,	add	05 nm
Calculated λ_{max}^{EtOH}		222 nm

(5) 3-Methyl-2-butenoic acid

$$CH_3 H$$

$$| |$$

$$CH_3-C = C-COOH$$

$$\uparrow \uparrow$$

$$\beta \alpha$$

Parent base	•	195 nm
Substituents α (1 × 10)		10 nm
β (1 × 12)		12 nm
Calculated		217 nm
Observed value		216 nm
Calculated Observed value		217 n 216 n

Dicarbonyl compounds

In cyclic α -diketones, the enolic form is generally more stable than the keto form and therefore, the absorption is related to that of an α , β -unsaturated carbonyl system. Six-membered cyclic α -diketone known generally as diosphenols, exist in solution largely in the enolised form. In strong alkaline solution the absorption shifts to about 50 nm to longer waves, due to the formation of the enolate ion, to enable diosphenol structures to be characterised.

Acetyl acetone exists in the enolic form to the extent of about 90% in solution in non-polar solvents and the absorption directly depends on the concentration of the enol tautomer.

However, in the case of acetyl acetone agreement with the calculated wavelength (257 nm) is indifferent. This may be due to the fact that the strong internal hydrogen bond forces the carbonyl group and the double bond into a configuration different from that which is present in cyclic structures, e.g., diosphenol exists almost entirely in the enolic form.

1,3-cyclohexanedione, absorbs at 253 nm ($\in_{max} 22,000$) in ethanol

1,3-Cyclohexanedione

The formation of enolate ion in alkaline solution in these cases also shifts the strong absorption band. Quinones represent α -, or vinylogous α diketones. The spectrum of p-benzoquinone is thus found to be similar with that of a typical α , β -unsaturated ketone with the strong K-band appearing at 242 nm and a weak R-band near 434 nm.

$$\lambda_{\max}^{\text{hexane}} = 242 \text{ nm} (\in 24,000)$$

$$(\pi \to \pi^* \text{ K-band})$$

$$281 \text{ nm} (\in 400) \text{ n} \to \pi^*$$

$$434 \text{ nm} (\in 20) \text{ R - band}$$

The colour of the simpler members is due to the weak $n \rightarrow \pi^*$ transition which is also present in α -diketones. The $n \rightarrow \pi^*$ transitions of α -diketones in the diketo form gives rise to two bands one in the usual region near 290 nm ($\epsilon \sim 30$) and a second ($\epsilon 10 \sim 30$) which stretches into the visible 340-440 nm region to give yellow colour to some of these compounds.

IV. Aromatic carbonyl compounds

2.	0	Base value	246 nm
		Br in m	02 nm
		$-CH_2$ in o	03 nm
	Br	-	251 nm
3.	(CH ₃) ₂ N	Base value	250 nm
		NMe ₂ in p	85 nm
	СНО	-	335 nm
4.	H ₂ N	Base value	230 nm
		NH ₂ in p	58 nm
	СООН		288 nm

Another approach to predicting, the λ max of the primary band of substituted benzenes involves the use of Table 1.5. This table has been successfully used with disubstituted compounds when the following rules are used:

I. Para substitution:

- a. Both groups are either electron donating or electron withdrawing: Only the effect of the group causing the larger shift is used. For example, the λ max of p-nitrobenzoic acid would be expected to be the same as that of nitrobenzene, $\sim(203.5 + 65.0) = \sim 268.5$ (in alcohol solvent).
- b. One group is electron donating and the other electron withdrawing: The shift in the primary band of such a disubstituted benzene is usually greater than the sum of the shifts caused individually by the two groups. Such large shifts in p-disubstituted benzens are attributed to interaction resonance, as illustrated below:

2. Ortho and Meta substitution: The shift effects are additive.

Table 1.4: Absorption characteristics of some polycyclic aromatic compounds

Compound	λmax, nm	∈max	λmax, nm	∈max	λmax, nm	emax
Benzene .	184	47,000	203	7,400	255	230
Napthalene	220	1,10,000	275	5,600	314	316
Anthracene	252	2,00,000	375	7,900	٠	•
Phenanthrene	252	50,000	295	13,000	330	2 50
Pyrene	240	89,000	334	50,000	352	630
Chrysene	268	1,41,000	320	13,000	360	630
Napthacene	278	1,30,000	473	11,000		•
Pentacene			580	12,600		

· These weak bands are usually submerged by strong adjacent bands.

.

Base Value: 203. 5 nm				
Substitutent	Shift	Substituent	Shift	
CH ₃	3.0	-NH ₂	26.5	
-CN	20.5	-NHCOCH ₃	38.5	
–CHO	46.0	-NO ₂	65.0	
-COCH ₃	42.0	–OH	7.0	
COOH	25.5	-0-	31.5	
–Br	6.5	–OCH ₃	13.5	
-Cl	6.0			

Table 1.5: Calculation of the Primary Band ($\pi \rightarrow \pi^*$ Transition) of substituted Benzenes (CH₃OH solvent)

Absorption Characteristics of Disubstituted Benzens:

Compound	π — Tran K B	→ π* sition Sand	B Band		
	λmax (nm)	∈max	λmax (nm)	∈max	
o-NO ₂ Phenol	279	6,600	351	3,200	
m-NO ₂ Phenol	274	6,000	333	1,960	
p-NO ₂ Phenol	318	10,000		Submerged	
o-NO ₂ Aniline	283	5,400	412	4,500	
m-NO ₂ Aniline	280	4,800	358	1,450	
p-NO ₂ Aniline	381	13,500		Submerged	

Table 1.6:	Absorption	characteristics	of	Aromatic	systems	and	their
	substituted of	derivatives					

Compound	Solvent	Prima	ry band	Secondary band			
		π –	→ π*	$\pi \rightarrow$	π*	n —	•π*
		Transition K Band		Transition B Band		Transition R Band	
		λ _{max} (nm)	€ _{ma\}	λ _{max} (nm)	∈ _{max}	λ _{max} (nm)	€ _{max}
Benzene	Hexane	204	7,900	256	200		
Toluene	Methanol(2%)	206.5	7,000	261	225		
o-Xylene	Methanol	210	8,300	263	300		

•

Compound	Solvent	Prim	Primary band		Secondary band			
-		π	→ π*	π-	$\pi \rightarrow \pi^{\star}$		• π*	
		Tra	Transition		Transition		Transition	
		К	Band	B B	and	R Band		
		λ _{max} (nm)	€ _{max}	λ _{max} (nm)	€ _{max}	λ _{max} (nm)	€ _{max}	
m-Xylene	Methanol	212	7,200	265	300			
p-Xylene	Methanol	212	8,000	274	460			
Benzaidehyde	Ethanol	244	15,000	280	1500	328	20	
Acetophenone	Ethanol	240	13,000	278	1,100	319	50	
Benzophenone	Ethanol	252	20,000			325	180	
Nitrobenzene	Hexane	252	10,000	280	1,000	330	125	
Benzonitrile	Water	224	13,000	271	1,000			
Diphenyl								
Sulfoxide	Alcohol	232	14,000	262	2,400			
Methyl phenyl								
sylfone	Alcohol	217	6,700	264	977			
Biphenyl	Alcohol	246	20,000	S	ubmerg	ed		
2,2'-Dimethyl		222		270	800			
biphenyl								
Diphenyl-								
methane	Ethanol	-	-	262	500			
Styrene	Hexane	244	12,000	282	450			
Phenylacetylene	- 5	236	12,500	278	650			
Stilbene (cis)	Alcohol	283	12,300	S	ubmerg	ed		
Stilbene (trans)	Alcohol	295	25,000	S	lubmerg	ed		
Cinnamic acid ((cis)	268	10,700					
(trans)		272	15,900					
1-Phenyl-1,3-								
butadiene (cis)	Isooctane	268	18,500					
(trans)	Isooctane	280	27,000					
1,3-Pentadiene								
(cis)	Alcohol	223	22,600					
(trans)	Alcohol	223.5	23,000					

Compound	Solvent	Primary band		5	Secondary band			
_		π -	→ π *	π —	→ π*	n →	• π*	
		Tran	nsition	Tran	sition	Trans	sition	
		KI	Band	BB	and	RB	and	
		λ _{max} (nm)	€ _{max}	λ_{max} (nm)	€ _{max}	λ _{max} (nm)	€ _{max}	
Chlorobenzene	Ethanol	210	7,600	265	240			
Thiophenol	Hexane	236	10,000	269	700			
Anisole	Methanol (2%)	217	6,400	269	1,480			
Phenol	Water	210.5	6,200	270	1,450			
Phenolate anion	Alkali (aq)	235	9,400	287	2,600			
o-Catechol	Water (P ^H 3)	214	6,300	276	2,300			
o-Catecholate	Water (P ^H 11)	236.5	6,800	292	3,500			
anion								
Aniline	Water	230	8,600	280	1,430			
Aniliniumcation	Acid (aq)	203	7,500	254	160			
Acetanilide	Water	238	10,500	-	-			
Diphenyl ether	Cyclohexane	255	11,000	272	2,000			
Naphthalene	Ethanol	275	5,700	312	250			
Anthracene	Ethanol	375	8,000					
Tetracene	Ethanol	474	13,000					
(Napthacene)								
Pentacene	Ethanol	580	15,000					
Pyridine	Hexane	257	2,750	270	450			
Quinoline	Cyclohexane	270	3,161	315	2,500			
lsoquinoline	Cyclohexane	265	4,170	313	1,800			
Acridine	Ethanol	358	10,000					
			Band I	F	Band II			
Furan	Cyclohexane	200	10,000	252	la			
Pyrrole	Hexane	209	6,730	240	300ª			
Thiophene	Hexane	231	7,100	269.5	1.5ª			
Pyrazole	Ethanol	214	3,160	-	-			

^a These weak bands may be due to impurities rather than a forbidden transition $(n \rightarrow \pi^*)$ of a hetero aromatic molecule.

Spectra of nonbenzenoid aromatic hydrocarbons show considerable resemblance to spectra of benzenoid compounds. Tropolone and its derivatives show absorption in the region 220 - 250 nm (\in_{max} ca 30,000) and 340 - 375 nm (\in_{max} ca 8,000); the latter absorption is characterized by the group of fine structure bands typical of aromatic systems.

Azulene and its derivatives have complicated spectra consisting of a number of relatively intense bands throughout most of the ultraviolet region (up to 360 nm) and a number of relatively weak bands throughout most of the visible region (500 - 700 nm). As a consequence of the latter, azulene and most of its derivatives are blue.

1.4: Approximate lower cutoff wavelengths* for commonly used solvents in UV-visible spectroscopy of organic substances

Solvent w	Cutoff avelength, nm	Solvent wa	Cutoff avelength, nm
	<u>200-250</u>		<u>250-300</u>
Acetonitrile	210	Benzene	280
n-Butanol	210	Carbon tetrachloride	265
Chloroform	245	N,N-Dimethylformamide	270
Cyclohexane	210	Methyl formate	260
Decahydronapthale	ne 200	Tetrachloroethylene	290
1, 1-Dichloroethane	e 235	Xylene	295
Dichloromethane	235		

Solvent	Cutoff	Solvent	Cutoff
M	vavelength, nm		wavelength, nm
Dioxane	225		
Dodecane	200		<u>300-350</u>
Ethanol	210	Acetone	330
Ethyl ether	210	Benzonitrile	300
Heptane	210	Bromofon-n	335
		Pyridine	305
Hexane	210		
Methanol	215		
Methylcyclohexan	e 210		<u>350-400</u>
isooctane	210		
isopropanol	215		
Water	210	Nitromethane	380

 Cutoff wavelengths: i.e. useful wavelength range is beyond the indicated wavelength.

Exercises and problems:

Explain the differences in the electron spectra of compounds (2) and
 compared to compound (1)

1.
$$(CH_3)_2 N - \sqrt{2} - N = N - \sqrt{2} - NO_2$$

 $\lambda \max = 475, \in = 32,000$

2. $(CH_3)_2 N - \swarrow N = N - \swarrow NO_2$ CH_3 $\lambda max = 438, \in = 22,000$

3.
$$(CH_3)_2 N - \sqrt{2} - N = N - \sqrt{2} - NO_2$$

HC(CH_3)_2
 $\lambda max = 420, \in = 18,600$

(2) Identify which one of the following two isomers has the electronic absorption band with $\lambda max = 241$ nm and $\in max = 18000$

- (3) Which structural features may produce a bathochromic or a hypsochromic effect in an organic compound.
- (4) Aniline absorbs at 230 nm (∈8600), however, in acid solution the main absorption band is seen at 203 nm (∈7500) and is comparable with benzene. Explain.
- (5) o-Nitrophenol gives a UV band at $\lambda max 350$ nm when the spectrum is recorded in 0.1 N HCl solution, but the band is observed at $\lambda max 415$ nm in 0.1 N NaOH solution. Explain.
- (6) Optical whiteners are used to make white clothes appear brighter. Can you suggest an explanation for the brightening action?
- (7) Explain the substitution pattern on the following enone and calculate the position of K band.

- (8) The position of absorption of acetone shifts in different solvents: 279 nm (hexane); 272 nm (ethanol) and 264.5 (water). Explain.
- (9) At what wavelength the coloured compounds absorb?
- (10) Biphenyl shows the following UV absorption data. In its 2, 2'-dimethyl derivative however, the absorption pattern becomes almost similar to o-xylene. Explain.

Biphenyl K-Band, $\lambda max \rightarrow 252$,

\in max \rightarrow 19,000	λmax 262,
planar conformation	∈max 270

(11) How will you confirm the presence of α -diketone system in the following steroid?

(12) Why the λ max for the diene (I) is observed at lower nm than (II)

(13) The following triene on partial hydrogenation gives three products. Which are separated by glc. How UV spectroscopy and application of Woodward-Fieser rules will help to identify the products.

Answers to the problems

(1) In compound (1) the unshared electron pair of the nitrogen atom in the dimethylamino group is conjugated with the benzene ring (n $\rightarrow \pi^*$ conjugation). While in compound (2) this conjugation cannot be complete owing to the methyl group at the ortho position.

When methyl at the ortho position is replaced by a more bulky group, namely, isopropyl, the peak wavelength is shifted still further (owing to full violation of conjugation) to shorter wavelengths ($\lambda = 420$ nm), with an accopanying drop of the band intensity ($\epsilon = 18,600$).

(2) For isomer 1 we find

λ

$$\lambda = 215 \text{ nm}$$

$$\frac{+ 24 \text{ nm}}{239 \text{ nm}}(2 \times 12)$$
For isomer 2 $\lambda = 215 \text{ nm}$

$$+ 12 \text{ nm} (\beta \text{-substituent})$$

$$+ 18 \text{ nm} (\delta \text{-substituent})$$

$$+ 30 \text{ nm} (\text{extra double bond in conjutive})$$

$$\frac{+ 05 \text{ nm}}{280 \text{ nm}} (\text{exocyclic double bond})$$

Hence, the absorption spectrum has been measured for isomer I.

(3) A bathochromic shift (red shift) may occur by a change of medium or by the presence of an auxochrome. A hypsochromic shift (blue shift) may be caused by a change of the medium or by such structural changes like removal of conjugation.

(4)
$$(4)$$
 (4)

Due to the removal of conjugation of the Ione pair of electrons on the nitrogen atom of aniline with the π -bond system of the benzene ring on protonation, the main absorption band is seen at 203 nm (\in 7500) and is comparable with benzene.

gation)

(5) In 0.1 N HCl solution o-Nitrophenol gives a UV band at λmax 350 nm due to n-π conjugation

Conversion of a phenol to the corresponding anion (i.e. in 0.1 N NaOH solution) results in a bathochromic shift of the E_2 and B bands and an increase in \in max because the nonbonding electrons in the anion are available for interaction with the π electron system of the ring. Therefore band is observed at 415 nm in 0.1 N NaOH soln.

- (6) Singlet excited state of the brightening agent is converted into triplet state which emits radiation in the visible range.
- (7) One α -substituent, two β -ring residues and one exocyclic double bond: 215 + 10 + 24 + 5 = 254 nm.
- (8) This is the expected shift of the n → π* transition of acetone to shorter wavelength (blue shift) by changing to solvents of increased polarity.
- (9) Longer than 400 nm.
- (10) Although biphenyl is slightly twisted, the angle of twist is small, therefore, conjugation between the rings is not affected. Biphenyl thus shows a very intense absorption band at 252 nm (K-Band). Biphenyl derivatives with bulky substituents in the ortho positions are more stable in twisted conformations than in the planar conformation, which suffers serious non-bonded compressions from the juxtaposed substituents. The loss of conjugation in the twist conformation of 2, 2–dimethylbiphenyl is reflected in its UV spectral data, which now structurally is like two moles of o-xylene.

 $(A = CH_3 \text{ and } B = CH_3)$ 2,2'-Dimethylbiphenyl

Twist conformation 2,2'-dimethylbiphenyl B-Band λmax 270, ∈max 800

(11) It will largely exist in the enolic form as revealed by the observed λmax 281 nm (∈max 9,700) which matches with the Cal. λmax (on enolisation the double bond becomes exocyclic to one ring). On acetylation the spectrum is restored to that calculated for the system now with OAC in the α-position. Further confirmation will come from the measurement of the spectrum of the enolised form in alkaline solution which will show the expected bathochromic shift of some 50 nm, i.e., 281 nm → 330 nm.

- (12) In both the dienes, there are 4 ring residues as substituents. In diene (II), the two double bonds are exocyclic, thus in it λ max will be higher by $2 \times 5 = 10$ nm.
- (13) The markedly differed values are expected from each of the structures.

base value 253 nm 214 nm 3 alkyl substituents 3×5 15 nm 15 nm exocyclic C=C 05 nm 05 nm Calculated or expected 273 nm 234 nm λmax $1 \leq 200$ nm (not conj)

Infrared Spectroscopy

Туре	Vibration	Frequency.	Wave	Relative
	mode	cm ⁻¹	length, µ	intensity*
1. Alkanes				
CH,	C-H str., asym.	2975-2950	3.36-3.39	m.
-	C-H str., sym.	2880-2860	3.47-3.50	m.
	C-H def., asym.	1470-1435	6.80-6.97	S.
	C-H def., sym.	1385-1370	7.22-7.30	m., sh.
C(CH,),	C-H def.	1385-1365	7.22-7.33	s., d.
	Skeletal	1175-1140	8.51-8.77	s., br.
		840-790	11.90.12.66	m.
C(CH ₃) ₃	C-H def.	1395-1365	7.17-7.33	s, d. ratio 1:2
5.5	Skeletal	1255-1200	7.97-8.33	s., br., d.
		750-720	13.33-13.89	s., br.
CH2-	C-H str., asym.	2940-2915	3.40-3.45	m. strong if
-				several
	C-H str., sym.	2870-2845	3.49-3.52	m. –CH,–
				present
	C-H, Scissoring	1480-1440	6.76-6.94	m.
	C–H, twisting &	Ca. 1250	Ca. 8.00	m.
	wagging			
	Skeletal, if	750-720	13.33-13.89	S.
	$-(CH_2)_4$ or more			
CH,	C-H str.	3080-3040	3.25-3.29	v .
-in cyclopropane	Skeletal	1020-1000	9.80-10.00	m.
СН	C-H str.	2900-2880	3.45-3.47	w.
	C-H def	Ca. 1340	Ca. 7.45	W.
2. Alkenes				
See Table 2.2a & 2.2	b			
3. Alkynes and allen	ies C-H str.	3310-3300	3.02-3.03	m.
Terminal/				
monosubstituted	C-H def.	600-650	16.7-15.4	S .
(RC≡CH)	C≡C str.	2140-2100	4.67-4.76	W.
ر /Nonterminal				
unsymmetrically	C≡C str.	2260-2190	4.42-4.57	υ.
disubstituted				
$R_1C \equiv CR_2$				

 Table 2.la: Characteristic infrarred absorption frequencies of common classes of organic compounds

Allenes (C=C=C)	C=C type str.,					
	antisym.	1970-1950	5.08-5.13	m.		
	C-C type str., syn	n. 1060	9.43	m.		
4. Aromatic hydrocar	rbons					
See Table 2.3						
5. Alcohols and phene	ols					
Free –OH	O–H str.	3650-3590	2.74-2-79	v., sh.		
Intermolecularly						
hydrogen bonded						
(Change on dilution)						
Dimeric (Single bridge	e					
compounds)	O–H str.	3550-3450	2.82-2.90	v., sh.		
Polymeric	O-H str.	3400-3230	2.94-3.10	s., br.		
Intramolecularly						
hydrogen bonded						
(no change on dilution	ı)					
single bridge						
compounds	O–H str.	3570-3450	2.80-2.90	v., sh.		
chelate compounds	O–H str.	3200-2500	3.1-4.0	w., br.		
Prirnary COH	O–H def.	1350-1260	7.40-7.94	s.		
	C–O str.	1075-1000	9.30-10.00	s.		
Secondary C-O-H	O– H def.	1350-1260	7.40-7.94	S.		
	C–O str.	1120-1030	8.93-9.71	s.		
Tertiary C-O-H	O–H def.	1410-1310	7.09-7.63	s.		
	C–O str.	1170-1100	8.55-9.09	s.		
Phenols	O–H def.	1410-1310	7.09-7.63	s.		
	CO str.	1230-1140	8.13-8.77	s.		
6. Ethers and epoxide	25					
Acyclic CH ₃ -O-CH ₃	R-O-R str.asym.	1150-1070	8.70-9.35	s.		
, , , , , , , , , , , , , , , , , , ,	C–H str.	2830-2815	3.54-3.55	m.		
Aryl and aralkyl	Ar-O-R str.,					
	Ar–O–Ar asym.	1260-1200	7.98-8.33	v-s		
	= CH str.	3150-3050	3.18-3.28	W.		
Conjugated	C–O–C str.	1275-1200	7.84-8.33	v.		

.

Infrarred Spectroscopy

t-butyl	C C-C-O str. C	920-800	10.87-12.50	S,
Cyclic	C–O str.	1140-1070.	8.77-9.35	S.
OCH2O	C–O str.	Ca. 940	Ca. 10-65	S.
	C–H str.	Ca. 2780	Ca. 3.65	v.
Epoxides	C–O str.	1260-1240	7.94-8.07	s.
trans	CO str.	950-860	10 53-11.63	v.
cis	C–O str.	865-785	11.56-12.74	m.

7. Carbonyl compounds

For C=O stretching vibrations of acid chlorides, acid anhydrides, carboxylic acids, esters, aldehydes, ketones, amides and salts, see tables 2.4 and 2.5.

Vibrations other than C = O stretching vibrations

a)	Anhydrides				
	Cyclic	C-O str.	1310- 1210	7.63-8.26	S.
	Acyclic	C–O str.	1175-1045	8.51-9.57	S.
b)	Carboxylic acids				
	Free OH	O–H str.	3550-3500	2.82-2 86	m.
	Bonded OH	O–H str.	3333-2500	3.00-4.00	w., br.
		fine structure band	s2700-2500	3.70-4-00	w.
	All OH	O-H def.	955-890	10 47-11.24	v.
	Solid fatty acids	CH ₂ vib.	1350-1180	7 40-8.48	W.
				c	characteristic
					pattern
	-СООН	C-O str. plus			
		O-H def.	1440-1395	6.94-7.17	w.
			1320-1210	7 58-8.26	s.
	Carboxylate ion	O=C-O str., asym.	1610-1550	6.21-6.45	S
		O=CO str., sym.	1420-1300	7.04-7.69	m.
c)	Esters				
	Fonnates	C–O str.	1200-1180	8.33-8.48	
	Acetates	C–O str.	1250-1230	8.00-8.13	s.
	Propionates and				
	higher esters	C–O str.	1200-1170	8 33-8.55	S .

	Esters of aromatic				
	acids	C–O str.	1300-1250	7.69-8.00	S.
	Vinylic and				
	phenolic acetates	C–O str.	1220-1200	8.20-8.33	s.
	Esters of α , β unsat. aliphatic acids	C–O str.	1310-1250	7.63-8.00	S.
d)	Aldehvdes	C-H str asym	2880-2650	3 47-3 77	w-m d
-,	i navný avo		975-780	10 26-12 82	w
~	Veterat		<i>yrs</i> 700	10.20 12.02	
e)	CU CO	CUL 4.6	1260 1255	7 36 7 38	_
	CH ₃ -CO	CH ₃ def.	1360-1355	7.35-7.38	S.
	CH ₂ -CO-	$-CH_2$ def.	1435-1405	6.97-7.12	s.
		C=O str., overto	ne 3550-3200	2.82-3.13	W.
f)	Amides				
	primary, free NH	N–H str.	3540 - 3480	2.83-2.88	S.
			3420-3380	2,92-2.96	S.
	bonded NH	N–H str.	3360-3320	2.98-3.01	m.
			3220-3180	3.11-3.15	m.
	Free or bonded	N–H def. plus			
	NH	C–N str.	1650-1620	6.06- 6.17	S.
			(amide II band)		
			1620-1590	6.17-6.29	s.
			(amide II band)		
Se	condary, free NH	N–H, cis str.	3440-3420	2.91-2.93	S.
		N-H, trans str.	3460-3430	2.89-2.92	s.
bo	nded NH	N-H, cis str.	3180-3140	3.15-3.19	m.
		N-H, trans str.	3330-3270	3.00-3.06	m.
		N-H. cis and			
		trans. str.	3100-3070	3.23-3.26	W.
		N–H def	Ca.700	Ca 14.30	conc
			(amide V band)	0411100	dependent
		N-H def plus	1305-1200	7 67-8 33	m
		C-N str	(amide III band)	1.07 0.55	
٨٥	velie compound	N H def plus	1570 1515	6 37 6 60	c
ΑU	yene compound	C_N etr	(amide II hand)	0.57-0.00	5.
		C-in su.		6 15 6 67	0
			(amida II hard)	0.42-0.02	S.
			(amide II band)		

Infrarred Spectroscopy

			770-620	13 00-16.13	m.
			(amide IV band)		
			630-530	15.87-18.87	S.
			(amide VI band)		
8.	Amines, amino aci	ds and their sal	ts see table 2.6		
9.	Unsaturated nitrog	gen compounds			
a)	Nitriles				
	saturated alkyl	$C \equiv N \text{ str.}$	2260-2240	4.42-4.46	m.
	α, β unsaturated				
	alkyl	$C \equiv N \text{ str.}$	2235-2215	4.47-4.51	S.,V.
	Aryl	$C \equiv N \text{ str.}$	2240-2220	4.46-4.50	m.
	Iso-	$C \equiv N \text{ str.}$	2185-2120	4.52-4.72	s.
b)	Oximes, pyridines,	quinolines, purir	nes, pyrimidies etc.		
	Acyclic saturated,	C=N str.	1690-1640	5.92-6.10	v .
	(alkyl compounds)				
	Acyclic α , β unsat.	C=N str.	1665-1630	6 01-6.14	v.
	compounds				
	Cyclic α , β unsat.	C=N str.	1660-1480	6.02-6.67	v.
	compound (such as	thiazoles)			
	Pyridines	C = N str.	1580-1550	6.33-6.45	w.
		=C-H str.	3070-3020	3.26-3.31	s.
		Ring C-H def.	Ca.1200	Ca. 8.33	S.
			1100-1000	9.09-10.00	s.
		C=C str.	1650-1580	6.06-6.35	m.
Ру	rimidines and	=C-H str.	3060-3010	3.27-3.32	S.
Pu	rines	Ring C-H def.	1000-960	10.00-10.42	m.
			825-775	12.12-12.90	m.
		C=N str.	1580-1520	6.33-6.58	m.
Ру	rroles	N–H str.	3440-3400	2.91-2.94	m.
		C=C str.	1565-1500	6.39-6.67	v., d.
٥	times	C=N str.	1690-1620	5.92-6.17	v.
		O-H str.	3650-3500	2.74-2.86	v
Az	o compounds	-N=N str.	1630-1575	6.14-6.35	v.
Са	rbodiimides	-N=C=N str.	2155-2130	4.64-4.70	s.
Isc	ocyanates	-N=C=O str	2275-2240	4.40-4.46	S , −V.
A7	tides	-N=N=N str	2170-2080	4.61-4 81	s.

31
10. Compounds containing nitrogen-oxygen bond

Nitrates (O– NO_2),	NO ₂ str., asym	1590-1500	6.29-6.67	S.
nitramines.nitro	NO ₂ , str., sym.	1390-1250	7 20-8.00	ч.
(compounds CC-NO2) C–N vib.	920-830	10 88-12.05	m., -s
Nitroso compounds	(R–C–N=O)			
alkyl, aromatic	N=O str.	1550-1500	6.45-6.67	s.
(α-halogeno, aliphatic	N=O str.	1620-1560	6.17-6.47	S.
Nitrites (RON=O)				
trans form	N=O str.	1680-1650	5.95-6.05	v., -s,
	N–O str.	815-750	12 27-13.33	S.
	O-N=O def.	625-565	16.00-17.70	S.
Cis form	N = O str.	1625-1610	6.16-6.21	v ., s.
	N-O str.	850-810	11.76-12.35	S.
	O-N=O def.	690-615	14.49-16.26	s.
	overtone	3360-3220	2.98-3.11	m.
Nitrosamines	N=O str.	1500-1480	6.67-6.76	s.Vapor
				phase
(R-N-N=O)		1460-1440	6.85-6.94	s. solution
				phase
	N–N str.	Ca. 1050	Ca. 9.52	S.
	N-N = 0 def.	Ca. 660	Ca. 15.15	s.
Azoxy comp.	N–O str.	1310-1250	7.63-8.00	m., -s.
(R-N-N-O)				
11. Sulfur compounds				
	S-H str.	2600-2550	3.85-3.92	w.
	C-S str.	700-570	14.18-17.54	W.
	C= S str.	1675-1130	5.97-8.85	S.
Thioketone	C = S str.	1250-1020	8.0-9.8	S
Thioamide	C=S str.	1300-1100	7.69-9.9	s.
Covalent sylfates	S=O str., sym	1440-1350	6.94-7.41	s.
$(RO)_2 SO_2$	S=O str., asym.	1230-1150	8.13-8.70	s.
Covalent sylfonates	S=O str. sym.	1420- 1330	7.04-7 52	s.
$(R_1 - O - SO_2 - R_2)$	S=O str., asym.	1200-1145	8.33-8.73	s.
Sulfonyl chlorides	S=O str., sym.	1375-1340	7.27-7.46	s.
(R–SO ₂ Cl)	S=O str., asym.	1190-1160	8.40-8.62	s.
Sylfonamides	S=O str., sym.	1370-1300	7.30-7.69	S.

$(R-SO_2-N)$	S=O str. asym.	1180-1140	8.48-8.77	s.
Sulfones	S=O Str., Sym.	1350-1300	7.41-7.69	V., -S.
(R_2SO_2)	S=O str., asym	1160-1120	8 62-8.93	v., -s.
Sylfonic acids	S=O str., sym.	1260-1150	7.94-8.70	S.
(RSO ₃ H)	S=O str., asym.	1080-1010	9.26-9.90	S.
Sylfites (RO), SO	S=O str.	1220-1170	8.20-8.55	S.
Sylfoxides (R-SO-R)	S=O str.	1070-1030	9.35-9.71	S.
12. Phosphorus comp	ounds			
РОН	O-H str.	2700-2560	3.70-3.90	W.
	P–H str.	2440-2350	4.10-4.26	m.
	P-C def.	1450-1280	6.90-7.81	ms.
	P=O str.	1350-1150	7.41-8.70	VS.
	P-O str.	1240-900	8.07-10.10	v.
Р-О-Р	PO str.	1000-870		s.
		~ 700		W.
P-O-C (aliph)		1050-970		s.
		830-740	s. (ma	y be absent)
P-O-C (arom)		1260-1160		s.
		994-855		S.
13. Halogen compour	nds			
Polyfluorinated	CF str.	1400-1100	7.14-9.10	vs., mlt.
Difluorinated	C–F str.	1250-1050	8.00-9.50	vs., d.
Monofluorinated	C–F str.	1110-1000	9.01-10.00	S.
Polychlorinated	CCl str.	800-700	12.50-14.30	vs.
C-Cl equatorial	C-Cl str	780-750	12.80-13.33	S.
C-Cl axial, other	C-Cl str.	Ca. 650	Ca. 15.40	S.
monochlorinated				
C–Br equatorial	C-Br str.	750-700	13.33-14.29	s.
C–Br axial	C-Br str.	690-550	14.50-18.20	S.
Other monobromides	C-Br str.	650-560	15.40-17.85	s.
Iodides	C–l str.	Ca. 500	Ca. 20.00	S.
14. Silicon and boron	compounds			
	BH str.	2220-1600	4.51-6.25	v., mlt.
	B–C def.	1460-1280	6.85-7.81	v.
	Si–H str.	2280-2080	4.39-4.81	VS.
	SiH def.	800-950	12.5-10.53	S.

.

Spectroscopic Data Chemistry

SIOH O–H str.		3700-3200	2.7	-3 12	s.
	Si–O	830-1110	12.0	5-9.01	s.
	Si-F str.	800-1000	12.	5-10.0	S
	Si-C def.	Ca. 1260	Ca	. 7.94	vs.
	Si-C str.	840-755	11.9	0-13.25	vs.
str.*=stretching	sym.=symmetric	s=strong absorpt	ion	w=weak at	osorption
def. = deformation	asym.=asymmetric	m.=medium abso	orption	v.=variable	e intensity
sh.=sharp peak	d.=doublet	br.=broad absorp	otion	mlt.=multi	plet ·

 Table 2.1b Correlations of infrared absorption and structure of organic compounds

Frequency	Wavelength	Intensity	Type and group	Bond
range	range			
4000-3001				
3676-3584	2.72-2.79	v., sh.	Alcohols, phenols,	
			free OH	O-H str.
3650-3496	2.74-2.86	v .	Oximes ($R-C = NOH$)	O–H str.
3595-3425	2.78-2.92	v., sh.	ROH, ArOH,	
			intramolecular hydrogen	
			bonded	O-H str.
3550-3500	2.82-2.86	m.	Carboxylic acids,	
			free OH	O–H str.
3550-3450	2.82-2.90	v., sh.	R-OH, Ar-OH, dimeric	O–H str.
3550-3205	2.82-3.12	w.	Ketones, C=O overtone	C=O str.
3540-3380	2.83-2.96	s., d.	Primary amides, free NH	N–H str.
3500-3300	2.86-3.03	v., d.	Primary amines,	
			free NH secondary amines	N–H str.
3460-3435	2.89-2.91	S.	Sec. amides, free NH (trans)	N–H str.
3360-3220	2.98-3.11	m.	Nitrites (R-O-N=O)	
			overtones	N=O str.
3440-3420	2.91-2.93	s.	Sec. amides, free	
	·		NH(cis)	N–H str.
3440-3400	2.91-2.94	m.	Pyrroles	N–H str.
3400-3300	2.94-3.03	v .	Imines	N-H str.
3400-3230	2.94-3.10	s., br.	R-OH, Ar-OH,	
			polymeric	O–H str.

3400-3200	2.94-3 13	m.d	Amino acid salts	NH ₂ str.
3400-3095	2.94-3.23	m.	Amines, imines.	
			associated	N–H str.
3390-3255	2.95-3.07	m.	Amido acids	N-H str.
3380-3150	2.96-3.18	m., mlt.	Charged amine	
			derivatives	NH⁺, str.
3360-3180	2.97-3.15	m., d.	Amides, bonded NH	N–H str.
			(primary)	N–H str.
3330-3270	3.00-3.06	m.	Sec. amides. bonded	
			(trans)	N–H str.
3310-3300	3.02-3.03	m.	Alkynes (RC≡CH)	C-H str.
3300-2500	3.00-4.00	w., br.	R-COOH, bonded OH	O-H str.
3200-1700	3.13-5.88	w., br.	R-OH, Ar-OH, chelate	O-H str.
3175-3135	3.15-3.19	m.	Sec. amides, bonded	
			NH (cis)	N–H str.
3150-3050	3.18-3.28	W.	EthersCH=CO	
			and C=CH-O-	C-H str.
3130-3030	3.20-3.30	m.	Amino acids,	
			hydrochlorides	NH ₃ ⁺ str.
Ca. 3100	ca. 3.23	v.	Tropolones	O-H str.
3100-3070	3.23-3.26	w.	Amides, bon. NH (cis)	N–H str.
3095-3075	3.23-3.25	m.	Alkenes (CHR=CH ₂)	RC-H str.
3085-3040	3.24-3.29	v .	Alkanes (CH ₂ ,	
			cyclopropane)	C-H str.
3085-3030	3.24-3.30	wm, mlt.	Aromatic homocyclic	
			(=C-H)	C-H str.
3075-3020	3.25-3.31	S.	Pyridines. quinolines	
			(=C-H)	C-H str.
3060-3010	3.27-3.32	S.	Pyrimidines, purines	
			(=C-H)	C-H str.
3050-2995	3.28-3.34	w.	Ethers, epoxides	OC-H str.
3040-3010	3.29-3 32	m	Alkenes (CHR=CH ₂ ,	
			CHR ₁ =CHR ₂ , cis	
			or trans, CR ₁ R ₂ =CH ₂)	C-H str.
3030-2500	3.30-4.00	w., mlt.	Amino acid	
			hydrochlorides	

3000-2001				
2975-2950	3.36-3.39	m.	Alkanes (CH ₃)	C-H str.
2940-2915	3.40-3.43	m.	Alkanes (–CH ₂ –)	C–H str.
2905-2875	3.44-3.48	w.	Alkanes (CH-)	C-H str.
2880-2860	3.47-3.50	m.	Alkanes (CH ₃)	C-H str.
2880-2650	3.47-3.77	wm., d.	Aldehydes (-CHO)	C-H str.
2870-2845	3.49-3.52	m.	Alkanes (–CH ₂ –)	C-H str.
2835-2815	3.53-3.55	m.	Ethers (-O-CH ₃)	C-H str.
Ca. 2825	ca. 3.54	m.	Alkyl acetals	C-H str.
2825-2760	3.54-3.62	ms.	Amines (N-methyl)	C-H str.
2780-2400	3.60-4.17	v .	Deuterated ROH,	
			ArOH	O-D str.
ca. 2780	ca. 3.60	v.	Ethers (O-CH ₂ -O-)	C-H str.
2760-2530	3.62-3.95	w.	Amino acids	
ca. 2700	ca. 3.70	s.	Charged amine	$\rm NH_2^+$ rck.
			derivatives	
2700-2560	3.70-3.90	w., b.	Organo-phosphorus	
			compounds	O–H str,
2640-2360	3.79-4.24	W.	Amido acids,	
2600-2400	3.85-4.15	v.	Deuterated amines,	
			imines	N–D str.
2590-2550	3.86-3.92	w.	Organo-sulfur	
			compounds	S-H str.
2500-2325	4.00-4.30	S.	Charged amines	
			(C=NH ⁺)	NH ⁺ str.
2280-2260	4.39-4.43	S.	Diazonium salts	
			$(R-C=N=N)^+$	
2280-2080	4.39-4.81	v .	Organo-silicon	
			compounds	Si–H str.
2275-2240	4.40-4.46	v .	isocyanates	N=C=O str.
2260-2240	4.43-4.46	wm.	Saturated nitrites	C≡N str.
2240-2220	4.46-4.51	ms.	Aryl nitrites	C≡N str.
2235-2215	4.47-4.52	S .	Acyclic α , β unsat.	
			nitriles	C≡N str.
2220-1600	4.51-6.25	v., mlt.	Boron compounds	B-H str.
2200-1800	4.55-5.56	wm.	Charged amine	
			derivatives	NH⁺ vib.

2185-2120	4.58-4.72	s.	Isonitriles	C≡N str
2160-2120	4.63-4.72	s.	Azides (-N=N=N)	–N=N≓N str.
2155-2150	4.64-4.69	S.	Carbodiimides	N=C=N str.
2140-2100	4.67-4.76	w.	Alkynes (RC≡CH)	C≡C str.
2140-2080	4.67-4.81	w.	Amino acids	NH_3^+ str.
Ca. 2100	ca. 4.76	w .	Deuterated alkanes	C–D str.
<u>2000-1501</u>				
ca. 2000	ca. 5.00	w.	Amino acid	
			hydrochlorides	
1970-1950	5.08-5.13	m.	Allenes (C=C=C)	C≡C type str.
1945-1835	5.14-5.45	W.	Amido acids	
1870-1830	5.35-5.46	s.	Acid anhydrides,	
			5 ring	C=O str.
1850-1810	5.40-5.53	s.	Acid anhydrides, conj.	
			5 ring	C=O str.
1850-1800	5.40-5.56	m.	Alkenes (CHR=CH ₂)	
			overtone	C-H str.
1840-1800	5.44-5.56	s.	Acid anhydride, acyclic	C=O str.
1820-1810	5.50-5.53	S.	Acyl peroxides	C=O str.
1820-1780	5.50-5.62	s.	conj.acyclic acid	C=O str.
			anhydrides	
1815-1785	5.51-5.60	S.	Acid halides	C=O str.
1805-1780	5.54-5.62	S.	Aroyl peroxides	
			esters, lactone	C=O str.
1800-1780	5.56-5.62	S.	(R-CO-O-) ₂	C=O str.
1800-1780	5.56-5.62	m	Alkenes ($CR_1R_2 = CH_2$),	
			overtone	C–H str.
1800-1770	5.56-5.65	S.	Conj. acid halides	C=O str.
1800-1770	5.56-5.65	S.	Vinylic phenolic esters	C=O str.
1800-1760	5.56-5.68	S.	Acid anhydride, 5 ring	C=O str.
1795-1740	5.57-5.75	S.	Acid anhydrides, conj.	•
			5 ring	C=O str.
1790-1720	5.59-5.81	S.	Ureas (CONHCO),	
			amide I	C=O str
1785-1755	5.60-5-70	S.	(RCO–O–) ₂	C=O str.
1780-1770	5.62-5.65	S.	Fused - ring β lactams,	
			amide I	C=O str.

1780-1760	5.62-5.68	S.	Ketones. 4 ring, sat.	
			γ lactone	C=O str.
1780-1740	5.62-5.75	S.	Acychc acid anhydrides	C=O str.
1760-1730	5.68-5.78	s.	Simple β lactams	C=O str.
1760-1720	5.68-5.81	s.	Conj. acyclic anhydrides	C=O str.
1755-1740	5.70-5.75	S.	α keto esters, α diesters	C=Ostr.
1755-1730	5.70-5.78	S.	α-amino acid hydrochloride	C=O str.
1755-1720	5.70-5.81	S.	Dicarboxylic α -amino acids	C=O str.
1750-1740	5.71-5.75	s.	Ketones. 5 ring	C=O str.
1750-1735	5.71-5.76	S.	γ-keto esters, diesters,	
			nonenolic β -keto esters	C=O str.
i750-1735	5.71-5.76	S.	Sat. aliphatic esters,	
			α-lactones	C=O str.
1745-1725	5.73-5.80	s.	CO-OCH ₂ -CO-	C=O str.
1750-1700	5.71-5.88	s.	Fused ring γ lactams	C=O str.
i740-1720	5.75-5-81	s.	Sat. aliphatic aldehydes	C=O str.
1740-1715	5.75-5.83	S.	α-halogeno carboxylic acids	C=O str.
1735-1700	5.76-5.88	S.	Urethanes	C=O str.
1730-1710	5.78-5.85	S.	COCO	C=O str.
1730-1700	5.78-5.88	s.	Amino acid hydrochlorides	C=O str.
1730-1715	5.78-5.83	S.	α , β unsat., aryl esters	C=O str.
1730-1700	5.78-5.88	s.	Dicarboxylic amino acids	C=O str.
1725-1705	5.80-5.87	s.	COCH2CH2CO	C=O str.
1725-1700	5.80-5.88	S.	Sat. aliphatic acids,	
			dimer, acyclic.	
			CH ₂ -CO-CH ₂ -ketones	C=Ostr.
1725-1695	5.80-5-90	s.	α -amido acids	C=O str.
1720-1700	5.81-5.88	s.	Ketones. 6-ring	C=O str.
1715-1700	5.83-5.88	s.	Ketones. 7-ring	C=O str.
1715-1695	5.83-5.90	s.	Aryl aldehydes	C=O str.
1715-1680	5.83-5.95	S.	α , β unsat, acids	C=O str.
1710-1690	5.85-5.92	S.	Carbamates. amide I band	C=O str.
1710-1670	5.85-5.99	s.	-CO-NH-CO-, amide	
			I band	C=O str.
1705-1685	5.78-5.93	s.	α , β unsat. aldehydes	C=O str.
ca. 1700	ca. 5.88	S.	Simple y lactams, amide	
			I band	C=O str

1700-1680	5 88-5.95	S.	Aryl carboxylic acids.	C=O str.
1700-1665	5.88-6.01	S	dimer, aryl ketones	C=O str.
			secondary amide.	
			amide I bind	
1695-1660	5.90-6.02	S.	α , β unsat. acyclic	
			or 6 ring ketones	C=O str.
ca. 1690	ca. 5.92	S.	Primary amides, amide	
			I band	C=O str.
1690-1670	5.92-5.99	w.	$CR_1R_2 = CR_2R_4$, alkenes	C=C str.
1690-1670	5.92-5.99	S.	o-hydroxy (amino)	
			benzoates	C=O str.
1690-1655	5.92-6-04	s.	Quinones, 2 CO's in	
			same ring	C=O str.
1690-1635	5.92-6-01	v.	oximes, oxazines, oxazolines,	,
			oxazolones, azomethines,	
			acyclic C=N	C=N str.
ca. 1680	ca. 5.95	s.	Large-ring cyclic lactams	C=O str.
1680-1660	5.95-6.02	S.	Conj. polyene aldehydes	C=O str.
1680-1650	5.95-6-06	S.	Intramolecular H-bonded	
			carboxylic acids	C=O str.
1680-1650	5.95-6.06	v.	Nitrites (R-O-N=O trans)	N=O str.
1680-1630	5.95-6-14	s.	sec. amides, amide I band	C=O str.
1680-1620	5.95-6.17	v .	Nonconj. alkenes	C=C str.
1675-1665	5.97-6.00	v.	Alkenes, CR ₁ R ₂ =CHR ₃	C=C str.
ca. 1675	ca. 5.97	S.	Thioesters	C=S str.
1670-1660	5.99-6	s	Cross-conj. dienones	C=O str.
1670-1645	5.99-6.08	s.	Intramolecular	
			ОН	
			H-bonded (-C=C-CHO	
			type) aldehydes	C=O str.
1670-1630	5.99-6.14	S.	Tertiary amides. amide	
			l band	C=O str
1665-1635	6.01-6 12	v.	Alkenes	
			$(CHR_1 = CHR_2 - cis)$	C=C str.
1665-1630	6.01-6 14	v .	Oximes, Oxazines, etc.	C=N str.

,

ca. 1660	ca. 6.02	S.	Ureas (NH-CO-NH).	
			amide I band	C=O str
1660-1640	6.02-6.10	v.	Alkenes ($CR_1R_2 = CH_2$)	C=C Str.
1660-1610	6.02-6-21	w.	Amino acids	
			containing NH ₂ group.	
			amino acid I band	NH ₃ ⁺ def.
1660-1580	6.02-6.33	S.	Alkenes conj. with	
			C=O or C=C	C=C str.
1660-1480	6.02-6.76	v.	Thiazoles (cyclic α , β	
			sat. C=N)	C=N str.
1655-1635	6.04-6.12	S.	Enolic β -keto esters,	
			chelated	C=O str.
1655-1635	6.04-6.12	s.	Quinones, 2 CO's in	
			2 rings	C=O str.
1655-1610	6.04-6.21	s.	oCOC ₆ H ₄ OH (or	
			NH ₂), H-bonded	C=O str.
1655-1610	6.04-6.21	S.	Nitrates (RONO ₂),	
			asym, vibration	NO, str.
ca. 1650	ca. 6.06	s.	Primary amides, amide	-
			I band	C=O str.
1650-1590	6.06-6.31	s.	Prim. amides, amide	
			II band, combination	
			NH def. + CN str. NH def	+ CN str.
1650-1620	6.06-6.17	s.	Amido acids, amide	
			I band- C=0	C + C = N str.
1650-1580	6.06-6.33	m.	pyrimidines, quinolines	
1650-1580	6.06-6.33	ms.	Prim. amines	NH def.
1650-1550	6.066.45	w.	Sec. amines	NH def.
1645-1640	6.08-6.10	V .	Alkenes (CHR=CH,)	C=C str.
1640-1605	6.10-6.23	s.	Alkyl nitroguanidines,	
			asym. NO, vibrations	NO, str.
1640-1535	6.10-6.52	s., d.	Ketones (-COCH,CO	
			or -CO-C=C-OH)	C=O str.
1630-1575	6.14-6.35	V.	Azo compounds	N=N str.
ca. 1625	ca. 6.16	s.	Alkenes, phenyl	
			conj. C=C	C=C str.

1625-1610	6.16-6.21	v.	Nitrites (RON=O cis	
			form)	N=O str.
1625-1575	6.16-6.35	v.	Aromatic homocyclic	
			comp.	C=C i-p vib.
1620-1600	6.17-6.25	s.	Tropolones	C=O str.
1620-1600	6.17-6.25	s.	Amido acids, amide	
			I band	
1620-1590	6.17-6.31	S.	Prim. amides, amide	NH def. +
			II band, combination	CN str.
			NH def. + CN str.	
1620-1560	6.17-6.41	s.	Nitroso compounds,	
			a halogeno	N=N str.
1620-1560	6.17-6.41	ms.	Charged amine derivatives	NH, ⁺ def.
1610-1590	6.21-6.29	w.	Amino acid hydrochlorides	NH, ⁺ def.
1610-1550	6.21-6.45	S.	Carboxylate ion,	,
			asym. str.	
Ca. 1600	ca. 6.25	m.	Charged amine derivatives	NH, ⁺ def.
1600-1575	6.25-6.35	S.	α , α –dihalogenonitro	,
			compounds	NO, str.
1600-1560	6.15-6.41	s.	Amino acid salts,	-
			all amino acids	
			with ionized carboxyl	C=O str.
1590-1575	6.29-636	v.	Aromatic homocyclic	
			comp. C= C	i–p str.
1590-1575	6.29-6.36	s.	Nitroureas	NO ₂ str.
1585-1530	6.31-6.54	s.	Saturated nitramines	NO ₂ str.
1580-1570	6.33-637	s.	α-halogenonitro	
			compounds	NO ₂ str.
1580-1550	6.33-6.45	w.	Nitrogen heterocycles,	1
			combination, C= C	
			and C=N str. C=	=C + C = N str.
1580-1520	6.33-6.58	m.	Pyrimidines and	
			purines, combination,	
			C=C and C=N str.	C=C+C=N str.
1570-1515	6.37-6.60	S.	Sec. acyclic amides,	
			amide II band,	
			combination NH def.	
			and CN str. NH	def. + CN str

Spectroscopic Data Chemistry

1570-1500	6.37-6.67	s.	All amido acids, amido	
			II band	N-H def.
ca. 1565	ca. 6.39	v .	Pyrroles	C=C str.
1565-1545	6.39-6.47	s.	Prim. and sec. nitro	
			compounds	NO_2 str.
ca. 1550	ca. 6.45	S .	Tertiary aliphatic	2
			nitroso compounds,	
			vapor phase	N=O str.
1550-1510	6.45-6.62	s.	Aromatic nitro compoun	ds
1550-1485	6.45-6.73	v .	Amino acids cont.	
			NH, group, amino acid	
			II band	NH ₃ ⁺ def.
1550-1510	6.45-6.62	s.	Sec. acyclic amides,	-
			amides II band N	NH def. + CN str.
1550-1485	6.45-6.73	v .	Amino acid	
			hydrochlorides	NH_3^+ def.
1545-1530	6.47-6.54	S.	Tert. nitro compounds	NO ₂ str.
1530-1510	6.54-6.62	S.	α , β -unsat. nitro	
			compounds	NO ₂ str.
1525-1475	6.56-6.78	v.	aromatic homocyclic	
			comp. C=C	i–p vib.
1510-1480	6.62-6.76	m.	Pyridines, quinolines,	
			combination C=C and	
			C=N str.	C=C+C=N str.
ca. 1500	ca. 6.67	v .	Pyrroles	C=C str.
ca. 1500	ca. 6.67	S.	Aromatic nitroso	
			compounds	N=O str.
ca. 1500	ca. 6.67	S.	Amine salts	NH def.
<u>1500-1001</u>				
1500-1440	6.67-6.94	S .	Nitrosamines (RNN=O)	N=O str.
1485-1445	6.74-6.92	m.	Alkanes (–CH ₂ –)	C-H def.
1470-1430	6.80-7.00	m.	Alkanes $(-CH_3)$	C-H def.
ca. 1467	ca. 6.81	m.	Alkanes, CH ₂ scissor	C-H def.
ca. 1460	ca. 6.85	m.	Alkanes. asym CH ₃	C-H def.
1455 (ca.)	ca. 6.87	m.	Alkanes, alicyclic CH ₂	
			scissor	C-H def.
ca. 1450	ca. 6.90	m.	Aromatic multiple bond	C=C str.

•

1430-1400	7.0-7.14	v .	Ketones, esters,	
			α-methylene C-H scissor	C-H def.
1430-1350	7.00-7.41	S.	Sulfites	S=O str.
1420-1410	7.04-7-09	S.	Alkenes (RCH=CH ₂	
			or $R_1R_2C=CH_2$)	C-H def.
1420-1390	7.04-7. 2 0	w.	Alcohols	O-H def.
1410-1310	7.10-7.60	S.	Phenols, tert.	
			alcohols	O-H def.
1400-1300	7.15-7.69	S.	Carboxylic acids, ionic	
1400-1000	7.15-10.0	s.	Halogen comp., fluorides	C-F str.
1395-1385	7.17-7.22	m., d.	Alkane, tert. butyl	C-H def.
1390-1360	7.20-7.35	m., d.	·Alkane, geminal dimethyl,	
			isopropyl, tert. butyl sym.	
			CH ₃ bending	CH ₃ def.
1380-1370	7.25-7.30	S.	Alkane,CH ₃	C-H def.
1380-1310	7.25-7.30	S.	Aliphatic nitro	
			compounds	NO ₂ str.
1370-1340	7.30-7.46	S .	Sulfonyl chlorides	S=O str.
1370-1300	7.30-7.70	S .	Aromatic nitro compounds	NO ₂ str.
ca. 1365	ca. 7.33	S.	Alkane, tert. butyl	C-H def.
1360-1310	735-7.64	S .	Aromatic tert. amines	C-N vib.
1350-1300	7.41-7.69	S .	Sulfones, sulfonamides	S=0 str.
1350-1280	7.41-7.81	S .	Aromatic sec. amines	C-N vib.
1350-1260	7.41-7.94	s.	Prim. and sec. alcohols	O-H def.
ca. 1340	ca. 7.46	W .	Alkanes	C-H def.
1340-1250	7.46-8.00	S.	Aromatic prim.	
			amines	C-N vib.
1340-1180	7.46-8.48	w.	Azides	–N ₃ str.
1335-1310	7.39-7.64	V .	Sulfur compounds	S=O str.
1310-1295	7.64-7.72	m.	Alkene ($R_1CH=CHR_2$)	
			trans	C-H def.
1300-1250	7.70-8.00	S.	Nitrates	O-NO ₂ vib.
1275-1200	7.84-8.33	v .	Conj. ethers	ROR str.
				0
ca. 1270	ca. 7.88	v .	Aromatic esters	-C - O - R str.
1260-1200	7.94-8.33	v .	Aromatic ethers	R-O-Ar str.
1257-1232	7.95-8.12	v .	Aliphatic esters,	
			CH ₃ COOR	

1255-1200	7.97-833	s., d.	Alkanes, tert. butyl	Skeletal str.
1240-1190	8.06-8.40	v .	Aromatic phosphorus	
			comp.	P–O str.
1230-1150	8.13-8.70	s.	Sulfites	S=O str.
1210-1150	8.27-8.70	S.	Sulfonic acids	S=O str.
1220-1020	8.20-9.80	w.	Aliphatic amines	C-N vib.
ca. 1200	ca. 8.33	s.	Phenols	C-O str.
1200-1050	8.33-9.52	S.	Sulfur compounds	C=S str.
1200-1190	8.33-8.40	v.	Esters (RCOOR)	
1185-1175	8.44-8.51	v .	Esters (H-COOR)	
1185-1165	8.44-8.59	s.	Sulfonyl chlorides	S=O str.
1180-1140	8.48-8.77	S.	Sulfonamides	S=O str.
1175-1140	8.51-8.77	s.	Alkanes, geminal dimethyl	skeletal vib.
1175-1155	8.51-8.65	v .	Methyl esters (R-COOCH ₃)	
1175-1125	8.51-8.89	W.	Substituted benzenes,	
			1, 3-disubstituted or	
			tri-substituted benzens	C-H def.
1160-1140	8.62-8.77	S.	Sulfones	S=O str.
ca. 1150	ca. 8.70	S.	Tertiary alcohols	C-OH str.
1150-1070	8.70-9.35	v .	Aliphatic ethers	R-OR str.
1120-1100	8.93-9.09	s.	Secondary alcohols	C–OH str.
1070-1030	9.35-9.71	s.	Sulfoxides	S=O str.
ca. 1060	ca. 9.40	m.	Allene (C=C=C)	
1060-1030	9.43-9.71	S.	Sulfonic acids	S=O str.
1075-1010	9.30-9.90	v .	Primary alcohols	C-OH str.
1050-990	9.52-10.1	v .	Phosphorus compounds	P-O str.
1000-501				
995-985	10.05-10.15	S.	Monosubstituted alkenes	
			(RCH=CH ₂)	C-H def.
970-960	10.31-10.42	s.	Disubstituted alkenes	
			$(R_1CH=CHR_2)$ trans	C-H def.
915-905	10.93-11.05	S .	Monosubstituted alkenes	
			(RCH=CH ₂)	C-H def.
900-860	11.11-11.63	m.	Tetra-or penta-substituted	
			benzene containing 1 free H	C-H def.
895-885	11.17-11.30	S.	Geminal disubstituted	
			alkene	C-H def.

885-870	11.30-11.50	m.	1,2,4-t	risubstituted benze	ene,
			anothe	r peak at 852-805	C-H def.
ca. 870	11.50 (Ca.)	m.	Pentas	ubstituted	
			benzen	ie	C-H def.
870-800	11.50-12.50	v .	Benzer	ne ring	
			contair	ning two adjacent	
			H aton	ıs	C-H def.
840-790	11.90-12.66	S .	Trisub	stitutated alkenes	C-H def.
810-750	12.34-13.34	v .	Benzei	ne ring with three	
			adjacer	nt H atoms	C-H def.
800-600	12.50-16.67	s.	Halide	s	C-Cl str.
770-735	12.98-13.61	v., s.	Benzer	ne ring with	
			four ad	ljacent free H	
			atoms		C-H def.
770-730	12.98-13.70	v., s.	Benzer	ne ring with five	
			adjacer	nt free H atoms,	
			second	peak at	C-H def.
			710-69	0	
ca. 690	ca. 14.50	S .	Disubs	tituted alkenes	
			(R ₁ CH	=CHR ₂) cis	C-H def.
ca. 650	ca. 15.40	S.	Sulfon	ic acids	S=O str.
ca. 630	ca. 15.90	S.	Alkyne	es	C-H def.
600-500	16.60-20.00	S.	Bromie	des	C-Br str.
ca. 500	ca. 20.00	S .	Iodides	5	C–I str.
s=strong ab	sorption	v.=variable i	ntensity	vib.=vibrating	bon.=bonded
m.=mediun	n absorption	sh.=sharp pe	ak	d.=doublet	sat.=saturated
w.=weak absorption		br.=broad ab	sorption	mlt.=multiplet	

Table 2.2a: Infrarred absorption frequencies of alkenes

Alkene type	Vibration mode	Frequency,	Wave	Relative
1011 1 - HE BUILETINDE 1.16 - 1011 - 01		cm -	iengtn, µ	intensity
RCH=CH ₂ (Vinyl)	C-H str. (CH ₂)	3095-3075	3.23-3.25	m
HH	C-H str. (CHR)	3040-3010	3.29-3.32	m
R C=C	Overtone	1850-1800	5.40-5.56	m
	C=C str.	1645-1640	6.08-6.10	v

	CH ₂ i–p def.	1430-1410	7.00-7.10	w
	CH i-p def.	1300-1290	7.69-7.75	v
	CH o-o-p def.	995-985	10.05-10.15	m
	CH ₂ oop def.	915-905	10.93-11.05	s
R ₁ CH=CHR ₂ (cis)	-			
H H	C–H str.	3040-3010	3.29-3.32	m
$\mathbf{P} > C = C < \mathbf{D}$	C=C str.	1665-1635	6.01-6.12	v
\mathbf{R}_1 \mathbf{R}_2	CH ip def.	1430-1400	7.00-7.14	w
	C-H o-o-p def.	730-665	13.70-15.04	s
R ₁ CH=CHR ₂ (trans)				
R _N H	CH str.	3040-3010	3.29-3.32	m
	C=C str.	1675-1665	5.97-6.01	v
11 K ₂	C-H i-p def.	1310-1290	7.63-7.75	w
	C-H o-o-p def.	980-960	10.20-10.42	S
R ₁ R ₂ C=CH ₂ (Vinylidin	ne)			
R _N /H	C–H str.	3095-3075	3.23-3.25	m
C = C < (gem)	overtone	1800-1780	5.56-5.62	m
\mathbf{K}_{2}^{\prime} \mathbf{H}	C=C str.	1660-1640	6.02-6.10	v
	CH ₂ i–p def.	1420-1410	7.04-7.09	w
	CH ₂ o-o-p def.	895-885	11.17-11.30	S
$R_1R_2C=CHR_3$	C–H str.	3040-3010	3.29-3.32	m
(Trisubstituted)	C≕C str.	1675-1665	5.97-6.01	v
R _I H	CH oo-p def.	840-790	11.90-12.66	m
R, R, R, R				
$R_1R_2C=CR_3R_4$				
(Tetrasubstituted)				
R_{1} R_{3}	C=C str.	1690-1670	5.92-5.99	w
R, C=C R,				
Ar-HC=CH ₂	C=C str.	~1625	~6.16	s
C=O or C=C				
Conjugated with				
C=C	C=C str.	1660-1580	6.02-6.33	S

Abbreviations: str. = stretching, i-p def. = in-plane deformation, o-o-p def. = out of plane deformation, s = strong, m = mediurn, w = weak, v = variable.

Ring or Chain		H C = C C C	$CH_3 C=C CH_3$	C=CH ₂
Chain cis	1661			
Chain trans	1676	1681	1672	1661
Three membered ring	1641		1890	1780
Four membered ring	1566		1685	1678
Five membered ring	1611	1658	1686	1657
Six membered ring	1649	1678	1685	1651
Seven membered ring	1651	1673		
Eight membered ring	1653			

Table 2.2b: C=C Stretching frequencies in cyclic and acyclic systems cm⁻¹

All rings have cis double bonds

Arormatic	Vibration	Frequency,	Wave-	Relative
compound	mode	cm ⁻¹	length, µ	Intensity
Monsubstituted	=C-H str.			
	(Multiple bands)	3080-3030	3.24-3.33	w-m
(five adjacent	C=C str. (ring	1604 ± 3	6.25-6.22	v
hydrogen atoms)	stretching)	1585 ± 3	6.31-6.30	v
		1510→1480*	6.62 →6.75	i v
		1452 ± 4	6.87-6.91	v
	C–H i–p def.	1177 ± 6(2.5 vs 3,6)	8.45-8.54	w
		$1156 \pm 5(3,5 \text{ vs } 4)$	8.61-8.69	w
		1073 ± 4(2,6 vs 3,4,5)	9.28-9.36	
		1027 ± 3(2,3 vs 5,6)	9.71-9 77	w
	C-H o-o-p def.	751 ± 15	13.06-13.58	s s
		697 ± 11	14 1-14 58	S
1, 2-Disubstituted	=C-H str (multiple	3080-3030	3 24-3.33	w-m
(four adjacent	bands)	1607 ± 9	6.26-6 19	v
hydrogen atoms)	C=C str. (ring	1577 ± 4	6 33-6 36	v
	stretching)	$1510 \rightarrow 1460$	6.85-6 62	v
		1447 ± 10	6.87-6 96	v
	C−H 1−p def.	1269 ± 17		
		(all clockwise)	7.77-7 99	w

		$1160 \pm 4(3,5 \text{ vs } 4,6)$	8 59-8 65	w
		$1125 \pm 14(3.6 \text{ vs } 4.5)$	8 78-9 0	w
		$1033 \pm 11(3, 4 \text{ vs } 5, 6)$	9 58-9 78	w
	C-H o-o-p def.	751 ± 7	13 20-13 44	s
1 3 - Disubstituted	=CH str.	3080-3030	3 24-3.33	w-m
(three adjacent	(multiple bands)			
hydrogen atoms)	C=C str	$1600 \rightarrow 1620$	$6.25 \rightarrow 6.17$	v
	(ring stretching)	1586 ± 5	6 29-6.32	v
		1495 → 1470	6.69 → 6 80	v
		1465 → 1430	6.83 → 6.99	v
	C-H i-p def.	1278 ± 12 (all	7.75-7.90	w
		clockwise)		
		1157 ± 5 (2, 5 vs 4, 6)	8.60-8.68	w
		$1096 \pm 7 (4 \text{ vs } 6)$	9.07-9.18	w
		1076+7(2 vs s)	9.23-9.36	w
	C+H o-o-p def	900 → 869 (1 free H)	11 12-11.63	m
		782 ± 10 (3 adj H Wag)	12.82-12.96	s
		725 → 680 (3 adj. H wag	g) 13.79-14.71	m
1:4 Disubstituted	=C-H str (multiple	3080-3030	3.24-3.33	w-m
(two adjacent	bands)	1606 ± 6	6.20-6.25	v
hydrogen atoms)	C=C str. (ring	1579 ± 6	6 31 -6 .36	v
	stretching)	1520 → 1480	6 58 → 6.76	v
		1409 ± 8	7.05-7 15	v
	C-H 1-p def	1258 ± 11 (all clockwise)	7.88-8 02	w
		1175 ± 6 (2, 5 vs 3,6)	8 47-8.56	w
		1117 ± 7 (2, 6 vs 3,5)	8.90-9.01	w
		1013 ± 5 (2, 3 vs 5,6)	9.82-9.92	w
	C-H o-o-p def.	817 ± 15	12.02-12.47	S
1:2:3- Trisubstituted	=C-H str.	3080-3030	3.24-3.33	w-m
	(multiple bands)			
	C∸H i–p def.	$1175 \rightarrow 1125$	8.51 → 8.90	w
		$1110 \rightarrow 1070$	9.01 → 9.35	w
		1070 → 1000	$9.35 \rightarrow 10.00$	w
		$1000 \rightarrow 960$	$10.00 \rightarrow 10.42$	w
	C-H o-o-p def.	800 → 770	12.50 → 12.99	s
		$720 \rightarrow 685$	$13 \ 90 \rightarrow 14.60$	m
1:2.4-Trisubstituted	=C-H str (multiple	3080-3030	3 24-3 33	w-m
	bands)			
	C=C str (ring	1616 ± 8	6 15-6.22	v
	stretching)	1577± 8	6 31-6 37	v
		1510 ± 8	6 60-6.66	v
		1456 ± 1	6 86-6 88	v

	C-H 1-p def	$1225 \rightarrow 1175$	$8 16 \rightarrow 851$	w
		$1175 \rightarrow 1125$	8.51 → 8 89	w
		$1125 \rightarrow 1090$	8 89 → 9 18	w
		$1070 \rightarrow 1000$	$935 \rightarrow 1000$	w
	C-H o-o-p def	900 → 860	11.11 → 11 63	m
		860 → 800	$11.63 \rightarrow 12.50$	S
1.3.5-Trisubstituted	=C-H str	3080-3030	3 24-3 33	w-m
	(multiple bands)			
	C-H i-p def.	$1175 \rightarrow 1125$	8.51 → 8 89	w
		1070 → 1000	9.35 → 10.00	w
	C-H o-o-p def.	900 → °€0	11 11 → 11 63	m
		865 → 810	$11.56 \rightarrow 12.30$	s
		730 → 675	13 70 → 14.82	s
1:2:3 :4-	=C-H str.	3080-3030	3 24-3 33	w-m
Tetrasubstituted	(multiple bands)			
	C-H o-o-p def	860 → 800	$11~63 \rightarrow 12~50$	s
1:2:3:5; 1:2.4.5 and	=C-H str.			
1:2:3:4:5	(multiple bands)	3080-3030	3.24-3.33	w-m
substituted				
	C-H o-o-p def	900 → 860	11.11 → 11.63	m

* The symbol 151 0 → 1480 indicates the range, in cm⁻¹, of absorption of radiation. Usually an electron donor substitutent causes absorption near 1510 cm⁻¹, while an electron acceptor substitutent causes absorption near 1480 cm⁻¹.

Abbreviations: str. = stretching, i-p def. = in plane deformation, o-o-p def. = out of plane deformation, w = weak, m = medium, s = strong, v = variable, adj. = adjacent, wag = wagging.

	Table 2.4:	$\mathbf{C} = 0$	stretching	frequencies	of carbony	l compounds
--	------------	------------------	------------	-------------	------------	-------------

Type of carbonyl	Typical examples (phase)	C=O st.	Value of
Compound		fre. cm ⁻¹	absorption
	,		wavelength, µ
Acid anhydrides			
(RCOOCOR)			
a. Saturated, acyclic		1850-1800	5.41-5.56
		1790-1740	5.59-5.75
	Acetic anhydride (CCI_4)	1825 and 1754	5.48 and 5.70
b. Saturated, 5-		1870-1820	5.35-5.49
membered ring		1800-1750	5.56-5.71
	Succinic anhydride(CHCl ₃)	1820 and 1776	5.49 and 5.63

c. α , β - Unsaturated		1830-1780	5.47 -5-6 2
and aryl, acyclic		1770-1720	5.65-5-81
	Benzoic anhydride (CHCl ₃)	1818 and 1740	5.50 and 5.75
d. α , β - Unsaturated	,	1850-1800	5.41-5.56
5 membered ring		1830-1780	5.47-5-62
Acid halides (RCO)	X)		
a. Acyl fluorides		~1850	~5.41
b'. Acyl chlorides	Acetyl chloride (CCl_{4})	~1795	~5.57
	•	1812	5.52
	Isovaleryl chloride (Film)	1792	5.58
		~1810	~5.53
		1780-1750	5.61-5.72
		1750-1720(m)	5.72-5.82
c. Acyl bromides			
d. α , β - Unsaturated			
and aryl	Benzoyl chloride (CCl ₄)	1739	5.75
e. COF ₂		1928	5.19
f. COCl ₂		1828	5.47
g. COBr ₂		1828	5.47
Carboxylic acids			
(RCOOH)dimers			
a. Saturated aliphatic	2	1725-1700	5.80-5.88
	Butyric acid		
	(monomer) (CCI_4)	1775	5.63
	Acetic acid (CCl_4)	1760	5.68
	Butyric acid (Film)	1721	5.81
	α - chloropropionic acid (Film)) 1724	5.80
	n- Hexanoic acid (Film)	1698	5.89
b. α , β - unsaturated		1715-1690	5.83-5.92
aliphatic			
c. aryl		1700-1680	5.88-5.95
	Benzoic acid (KBr)	1678	5.96
	Salicylic acid (KBr)	1665	6.01
Esters (RCOOR)			
a. Saturated, acyclic		1750-1735	5.71-5.76

	Methyl acetate (CC1,)	1750	5.71
	Methyl propionate (CCl ₄)	1748	5.72
	Ethyl propionate (CCl ₄)	1736	5.76
	Propyl formate (CCl ₄)	1733	5.77
b. Saturated, cyclic	C		
δ-lactones (and lan	ger rings)	1750-1735	5.71-5.76
y-lactones		1780-1760	5.62-5.68
β-lactones		~1820	~5.5
c. Unsaturated			
vinyl ester type		1800-1770	5.56-5.65
	Vinyl acetate (CCl ₄)	1765	5.68
α , β - unsaturated a	and aryl	1730-1717	5.78-5.82
	Ethyl cinnamate (CCl ₄)	1710	5.85
α , β -unsaturated γ	-lactone	1760-1740	5.68-5.75
β - γ -unsaturated γ -	lactone	~1800	~5.56
d. α -keto esters		1755-1740	5.70-5.75
e. β -keto esters (er	nolic)	~1650	~6.06
f. Carbonates		1780-1740	5.62-5.75
Aldehydes (RCH	0)	•	
a. Saturated, alipha	atic	1740-1720	5.75-5.81
	n-butanal (CCl ₄)	1736	5.76
	Acetaldehyde (CCl_4)	1730	5.78
	Valeraldehyde (CCl ₄)	1730	5.78
	lsovaleraldehyde (Film)	1715	5.83
	o-Chlorobenzaldehyde (Film)	1695	5.90
b. α , β - Unsaturate	ed, aliphatic	1705-1680	5:87-5.95
c. α, β- γ- δ- Unsa	turated, aliphatic	1680-1660	5.95-6.02
d. Aryl	p-anisaldehyde (CCl ₄)	1715-1695	5.83-5.90
	CCI ₄	1690	5.92
Ketones (RCOR)			
a. Saturated acyclic	c	1725-1705	5.80-5.87
	Butanone (CCl ₄)	1724	5.80
	Acetone (CCl ₄)	1720	5.81
	2-Pentanone (CCl ₄)	1712	5.84
	Methyl isopropyl ketone Film	1709	5.85

b. Saturated, cyclic			
6-membered ring (a	nd higher)	1725-1705	5.80-5.87
5-membered ring		1750-1740	5.71-5.75
4-membered ring		~1775	~5.63
c. α , β - Unsaturated	, acyclic	1685-1665	5.94-6.01
	Methyl vinyl ketone (CCl ₄)	1686	5.93
d. α , β -Unsaturated,	cyclic		
6-membered ring (an	nd higher)	1685-1665	5.94-6.01
5-membered ring		1725-1708	5.80-5.85
e- α , β , α^1 , β^1 ,-Unsa	iturated,	1670-1663	5.99-6.01
acyclic			
f. Aryl		1700-1680	5.88-5.95
	propiophenone (CCl ₄)	1686	5.93
g. Diaryl		1670-1660	5.99-6.02
	Benzophenone (CHCl ₃)	1669	5.99
h. α- Diketones		1730-1710	5.78-5.85
i. β-Diketones (enol	ic)	1640-1540	6.10-6.50
j. 1, 4-Quinones		1690-1660	5.92-6.02
k. Ketenes		~2150	~4.65
Amides			
a. Primary (RCONH	,)		
solid and concentrat	ed solution	~1650	~6.06
dilute solution		~1690	~5.92
	Acetamide (CHCl ₃)	1670 and shoulder	5.97 and
		at 1716	5.83 (sh.)
b. Secondary (RCO)	NHR)		
solid and concentrate	ed	1680-1630	5.95-6.14
solution			
dilute solution		1700-1670	5.88-5.99
	N-methyl acetamide (CCl_4)	1675and shoulder	5.97and
		at 1705	5.86 (sh.)
c. Tertiary, solid and	all solutions	1670-1630	5.99-6.14
	N, N-dimethyl-(CCl ₄)	1660 and shoulder	6.02 and
	acetamide	at 1710	5.85 (sh.)

d. Cyclic, δ-lactams, dilute solution	~1680	~5.95
e. Cyclic, γ-lactams, dilute solution	~1700	~5.88
f. Cyclic, y-lactams, fused to	1750-1700	5.71-5.88
another ring, dilute solution		
g. Cyclic, β-lactams, dilute solution	1760-1730	5.68-5.78
h. Cyclic, β -lactams, fused to another ring,		
dilute solution	1780-1770	5.62-5.65
i. Ureas, acyclic	~1660	~6.02
j. Ureas, cyclic, 6 membered ring	~1640	~6.10
k. Ureas, cyclic, 5-membered ring	~1720	~5.81
1. Urethanes	1740-1690	5.75-5.92
m. Imides, acyclic	~1710	~5.85
	~1700	~5.88
n. Imides, cyclic, 6-membered ring	~1710	~5.85
o. Imides, cyclic, α , β - unsaturated,	~1730	~5.78
6-membered ring	~1670	~5.99
p. Imides, cyclic,	~1770	~5.65
5-membered ring	~1700	~5.88
q. Imides, cyclic, α, β-	~1790	~5.59
unsaturated, 5-membered ring	~1710	~5.85

Table 2.5: Variation in frequency of vibrations of carbonyl stretching bands due to inter and intramolecular factors

Shift to higher	Add cm ⁻¹	Shift to lower	Substract
frequency		frequency	cm ⁻¹
Basic value in CCl ₄	1720	Neat solid or liquid state	10
Solvent			
Hydrocarbon solvents	7	CHCl ₃ , CHBr ₃ , CH ₃ CN	
		(partially polar)	15
Ring strain		Ring strain	
Angle decreases $6 \rightarrow 5$ r	ing 35	Angle increases $6 \rightarrow 7$	
		to 10 ring	10

Spectroscopic Data Chemistry

Bridged systems	15	Substitution on α -carbon	
Substitution on α -carbon		Each alkyl group	5
(Field and inductive effects)		Alkyl groups substituted	
		by amine	
Substituent cis oriented and		-NH ₂ (amide)	5
Coplanar		-NHMe (monosubstituted amide)	30
–Cl, –Br, –OR	20	-NMe ₂ (disubstituted amide)	55
OH, andOAC		Intramolecular hydrogen bonding	
Substituent trans and	Nil	Weak: α or β -OH ketone	10
nonplanar		Medium: o-OH arylketone	40
Alkyl group substituted by		Strong : β-diketone	100
electronegative atoms or grou	ıps	Intermolecular hydrogen bonding	
–H (aldehyde)	10	Weak: ROHO=C<	15
–OR (ester)	25	Strong: RCOOH dimer	45
-OH (monomeric acid)	40		
-O-C=C (vinyl ester)	50	conjugation (depends	
		on stereochemistry)	
-Cl (acid chloride)	90		
-OCOR (anhydrides)	100	First C=C	30
		Second C=C	15
		Third C=C	Nil
		Benzene ring	20
		Vinylogous,	
		-CO-C=C-X(X=Hor O)	40

Compound	N-H stretchin	g	N-H	C-N	C=0	C0	Other vibrations
	asym	sym	deformation	stretching	stretching	stretching	and remarks
Primary amines	3550-3350	3450-3250	1650-1580	1220-1020 (al	i)		Shoulder at 3200
	(2.82-2.99µ)	(2.90-3.08µ)	(6.06-6.33µ)	(8.2-9.8µ)			(3.12μ) , overtone of
				1340-1250 (ar	0)		1610 (6.21µ) band
				(7.46-8.0µ)			N-H wagging strong
							band at 850-750
							(11.76-13.34µ)
Scondary amines	3550-3350		1650-1550	1350-1280 arc	1		N-H wagging strong
	(2.82-2.99µ)		(6.06-6.45µ)	(7.41-7.81µ)			band at 750-700
							(13.34 - 14.29µ)-N-H
							def. band often masked
							by aromatic band in
							aromatic compounds
Tertiary amines				1380-1260 arc	•		N-Me band in secon-
				(7.24-7.94µ)			dary and tertiary.
							amines, observed at
							2820-2760 (3.54-
							3.62µ)
Amine	About 3380,		About 1600				
hydrochloride	(2.96µ)		(6.25µ) asym.				
chloride	NH_{3}^{+} str.						

Table 2.6: Vibration modes of amines and amino acids (frequency in cm⁻¹)

Compound	N-H stretcl	ning	N-H	C-N	C=0	С-О	Other vibrations
	asym	sym	deformation	stretching	stretching	stretching	and remarks
Charged amine	About 3280),	About 1300				
derivatives	(3.05µ) NH	+ ₃ str.	(7.7µ) sym.				
	3350-3150,	NH_{3}^{+} str.	About 800				
	(2.99-3.17µ	ι) (12.5μ)	rock				
	NH ⁺ , solid	phase					
Primary amino	3125-3030		1660-1610 ba	nd I	1600-1560 io	nized	Weak band at 2760-
acids	(3.2-3.3µ)		(6.02 - 6.21µ)		(6.25-6.41µ)		2530 (3.62-3.96µ)
					carboxyl str.		
			1550-1485 bai	nd II			Medium band at 1300
			(6.45-6.74µ)				(7.69µ)
Dicarboxylic ami	no				1755-1720		
acids					(5.7-5.81µ)		
					unionised ca	rboxyl str.	
Amino acid	3130-3030		1610-1590 ba	nd I	1755-1730	1230-1215	Series of bands
hydrochlorides	(3.2 - 3.3µ)		(6.21-6.29µ)		(5.7-5.78μ)	(8.13-8.23µ)) between 3030 and
			1550-1480 ba	nd II	Unionised		2500 (3.3 and 4.0µ)
			(6.45-6.75µ)		carboxyl str.		
Amino acid	3400-3200				1600-1560		
sodium salts	(2.94-3.13µ	ι)			(6.25-6.14µ)		
	Two bands				ionised carbo	xyl	

Table-2.7: Infrared Transmission characteristics of selected solvents and Mulling Oils

Solvent	Absorption (cm ⁻¹)
Acetone	3480-3340, 3180-2730, 1890-1060, 940-880, 805-790, 600-630
Acetonitrile	3260-2800, 2340-2180, 1600-1310, 1100- 1000, 980-900, 815-740, 630-600
Benzene	3150-2960, 2000-1935, 1860-1790, 1545- 1500, 1445-1365, 1190-1140, 1070-980, 865- 845, 600-750
Benzonitrile	3150-2960, 2280-2160, 2000-1890, 1640- 1285, 1215-1165, 1100-1000, 960-915, 600- 820
Bis-2-(methyl ethyl) ether	3150-2580, 2000-1930, 1545-815, 600-635
Bromoform	3060-2960, 1190-1100, 600-800
Bromotrichloromethane	600-840
Butyl acetate	3150-2800, 1935-815, 780-755, 600-680
1-Butanol	3600-2500, 1600-600
Dibutyl ether	3040-2580, 1540-810, 775-740, 630-600
Carbondisulfide	2360-2100, 1625-1410, 690-600
Carbon tetrachloride	1570-1520, 840-720, 690-600
Chloroform	3060-2960, 1250-1180, 945-935, 830-600
Cyclohexane	3040-2580, 1510-1410, 1285-1250, 1060- 1020, 910-860, 680-600

(Transmission below 80% obtained with a 0-10 mm cell path is given in cm⁻¹)

Solvent	Absorption (cm ⁻¹)
Cyclopentane	3060-2730, 1520-1410, 1340-1310, 925-870, 645-600
1,2-Dichloroethane	3150-2960, 1500-1435, 1370-1230, 1050- 1070, 975-875, 765-600
Diethyl ether	3060-2600, 2000-1965, 1525-1000, 960-895, 870-790, 635-600
1,4-Dioxane	3060-2650, 2000-1965, 1460-1075, 940-825, 690-600
Dodecane	3060-2650, 1460-1290, 755-695, 665-600
Hexane	3060-2650, 1525-1330, 900-885, 780-720, 635-600
Tetrachloro ethylene	1060-1035, 960-885, 830-745, 680-600
1,1-Trichloro-trifluoroethane	1415-1345, 1270-780, 700-600
2,2,4-Trimethylpentane	3040-2550, 1520-1175, 1000-975, 645-600
Water	3650-2930, 1750-1580, 930-600
Mulling Oils	Absorption (cm ⁻¹)
Nujol®	3030-2860, 1460-1386, 720
Hexachlorobutadiene	1650-1500, 1280-1200, 1020-760
Fluorolube®	1350-650

Problems: (1) The IR spectrum of an organic compound CgH_7N shows the following bands:

3030(w); 2920(w); 2217(s); 1607(m); 1607(m); 1508(m); 817(s)

What is its structure?

 C_8H_7N Index = 6* (Probably aromatic)

* [For a molecule (CwHxNyOz, the total number of rings and double bonds is obtained by the formula R = 1/2 (2w - x + y + 2)

Here M.F. = $C_{e}H_{7}N = R = 1/2 (16 - 7 + 1 + 2) = 6$.

The presence of one benzene ring in the structure requires at least four unsaturation sites (3 double bonds + 1 ring)]

 3030 cm^{-1} ; 1607 cm⁻¹; 1508 cm⁻¹ aromatic 2217 cm⁻¹; CN rather than C=C which gives a weak band CN, C₇H₇ Index 2

The band at 2920 cm⁻¹ is weak. Since alkyl groups give a strong band in this region, it may be concluded that such groups are absent or are very few in number. This is supported by the fact that CN accounts for an index value of 2 and the remaining index (4) must be in the C_7H_7 unit. This can be a heptatriene or a phenyl ring. But the presence of a band at 2920 cm⁻¹, though weak, indicates the presence of atleast one alkyl unit, hence heptatriene ring is absent and C_7H_7 is a toluyl unit. The very strong band at 817 cm⁻¹ may be ascribed to out of plane bending vibrations of two –ArH atoms and hence, the compound is a p–disubstituted benzene and the structure of the compound is

(2) Identify the structure of the compound C_8H_8O whose spectrum contains the following absorption bands:

1680(s), 1600(m), 1580(m), 1450(m), 1430(s), 1360(s), 1265(s), 755(s), 690(s) cm⁻¹.

The empirical formula suggests the following structure for the compound:

•,;

The IR spectral bands agree with this structure. The monosubstituted benzene ring has the characteristic bands at 1600, 1580, 1450, 750 and 690 cm⁻¹, the characteristic bands for the aromatic ketone are at 1680 and 1275 cm⁻¹, and those for the methyl group are at 1430 and 1360 cm⁻¹.

(3) Deduce the structure:

Several bands in finger print region, i.e., a branched alkane. The latter four bands are two doublets— indicating isopropyl and tert-butyl groups

[(CH₃)₂CH] [C(CH₃)₃]CH₂

Therefore, the compound is

$$CH_3$$
 CH_3
 $|$ $|$ $|$ CH_3 -CH-CH_2-C-CH_3 2,2,4-trimethylpentane
 $|$ CH_3 -CH-CH_2-C-CH_3 CH_3

(4) From the following examples, we can readily see the usefulness of **Table 2.5** in predicting the values of C=O absorption bands. The wavenumbers for C=O stretching vibrations for a number of compounds are calculated as follows:

a. Benzophenone in chloroform

Basic value for C=	1720 cm⁻	
Shift due to benzer	– 40 cm ⁻¹	
Shift due to solven	t CHCl ₃	- 15 cm ⁻¹
	Calculated	1665 cm ⁻¹
	Observed	1669 cm ⁻¹

b. Vinyl propionate in CCl₄

/ ⁰	
CH ₃ CH ₂ -C	
OCH=CH ₂	
Basic value for C=O absorption	1720 cm ⁻¹
Vinyl ester (-O-C=C) shift	$+ 50 \text{ cm}^{-1}$
Alkyl group on a carbon	-5 cm^{-1}
Calculated	1765 cm ⁻¹
Observed	1760 cm ⁻¹
c. Acetic anhydride in CCl_4	
_0	
CHC	
CH ₃ -C	
0	
Basic value for C=O absorption	1720 cm ⁻¹
Anhydride (-O-COR)	$+ 100 \text{ cm}^{-1}$
Calculated	1820 cm ⁻¹
Observed	1825 cm ⁻¹
d. Benzamide in CHCl _a	
Q	
∥ C_NH	
Basic value for C=O absorption	1720 cm ⁻¹
Alkyl group substituted by NH,	- 5 cm ⁻¹
Alkyl group substituted by benzene	-20 cm^{-1}
Solvent polarity effect	-15 cm^{-1}
Hydrogen bonding about	-15 cm^{-1}
Calculated	1665 cm ⁻¹
	1.667
Observed	$166 / \text{ cm}^{-1}$

Spectroscopic Data Chemistry

e. Caprolactam neat liquid

_CH2C	CH2NH
ĆН,	
∕сн,-с	'H,C=O

Basic value for C=O absorption Alkyl group substituted by NHMe		1720 cm ⁻¹ - 30 cm ⁻¹ - 5 cm ⁻¹ - 10 cm ⁻¹
seven member ring		
Neat liquid		
	Calculated	1665 cm ⁻¹
	Observed	1667 cm ⁻¹

(5) Suppose that you are investigating a compound with the molecular formula $C_4H_6O_2$. You find that it contains an ester carbonyl and –ene group. You determine this on the basis of the following bands in the IR spectrum of a CCl_4 solution of the compound. 3030 cm⁻¹ (weak), 1765 cm⁻¹ (strong), 1649 cm⁻¹ (strong), 1225 cm⁻¹ (strong) and 1140 cm⁻¹ (strong). Identify these bands, write all the possible structures which include these two groups, and identify the compound.

Answer: Identification of the bands:

3030 cm⁻¹ C–H str. in terminal RHC=CH₂ (CHR group) 1765 cm⁻¹ C=O str. 1649 cm⁻¹ C=C str. (terminal) 1225 cm⁻¹ C–O–C str. (asym.) 1140 cm⁻¹ C–O–C str. (sym.)

For a compound with the molecular formula $C_4H_6O_2$, only two structures with an -ene and an ester carbonyl group can be written.

(a)
$$CH_2 = CH - C < O$$
 methyl acrylate (an α , β -
O - CH₃ unsaturated ester)

(b)
$$CH_3 - C \stackrel{\bigcirc}{=} O O \cdot CH = CH_2$$
 vinyl acetate

.

The two structures can be distinguished on the basis of their C=-O stretching frequencies. We can calculate C--O stretching frequency in each case

a)	Basic value	1720 cm ⁻¹	since the observed value is
	OR (ester)	+ 25 cm ¹	1765 cm ⁻¹ the compound is (b)
	conjugation (C=C)	-30 cm 1	
	Calculated	1715 cm ⁻¹	
b)	Basic value	1720 cm ⁻¹	
	-O-C=C (vinyl ester)	+ 50	
	Calculated	1770 cm ⁻¹	

,

Proton Magnetic Resonance Spectroscopy

General regions of chemical shifts

\$

3.1 Effect on shift positions of a single functional group

Functional group X	CH ₃ X	-CH ₂ X	-CHX	
Н	0.23	0.90	1.25	
CH ₃ or CH ₂ -	0.86	1.2	1.55	
C=C-	1.6	2.1		
C≡C	1.7	2.2	2.8	
Ph	2.25	2.6	2.85	
F	4.26	4.45	4.8	
Cl	3.05	3.5	4.05	
Br	2.7	3.4	4.1	
I	2.16	3.15	4.25	
ОН	3.2	3.4	3.8	
OR	3.2	3.4	3.6	
OPh	3.82	4.05	4.55	
OCOR	3.62	4.1	4.95	
OCOPh	3.82	4.2	5.05	
OTs*	3.7	3.9	4.65	
СНО	2.2	2.39	2.5	
COR	2.1	2.35	2.64	
COPh	2.4	2.74	34	
СООН	2.1	2.3	2.54	
COOR	2.0	2.25	2.5	
CONR,	2.0	2.26	2.4	
C≡N	2.15	2.45	2.85	
NH,	2.52	2.7	3.04	
NR,	2.22	2.4	2.84	
NPhR	2.6	3.04	3.6	
N ⁻ R ₃	2.95	3.04	3.6	
NHCOR	2.95	3.34	3.8	

Table 3.1: Chemical Shifts of Methyl, Methylene and Methine protons (α to the functional groups) in δ

Functional group X	CH ₃ X	CH ₂ X	CHX
NO,	4.08	4.15	4.4
N=C	2.92	3.3	4.9
N=C=O		3.3	
O–C≡N		4.6	
N=C=S	3.4	3.7	4.0
S–C≡N	2.72	3.0	3.3
O-N=O		4.8	
SH	2.1	2.6	3.1
SR	2.1	2.6	3.12
SPh	2.52		
SSR	2.4	2.72	
SOR	2.6	3.1	
SO ₂ R		3.1	
SO ₃ R	3.0		
PR ₂		2.4	
P ⁺ Cl ₃	3.32	3.4	
POR ₂		2.4	
PSR ₂		2.8	

OTs is

Functional group X	CH ₃ -C-X	-CH ₂ -C-X	СНСХ
CH ₂ -	0.86	1.2	1.55
C=C-	1.0	1.36	1.76
C≡C-	1.2	1.5	1.8
Ph	1.16	1.55	1.8
F	1.55	1.85	2.15
CI	1.55	1.8	1.95
Br	1.8	1.85	1.9
I	1.76	1.8	2.1
ОН	1.2	1.5	1.76
OR	1.2	1.5	1.76
OPh	1.3	1.55	2.0
OCOR	1.3	1.6	1.8
OCOPh	1.65	1.75	1.95
OCOCF ₃	1.4	1.65	
СНО	1.1	1.65	
COR	1.05	1.55	1.95
COPh	1.16	1.56	1.9
COOR	1.16	1.7	1.9
CONR ₂	1.1	1.5	1.8
C≡N	1.25	1.65	2.0
NR ₂	1.05	1.45	1.7
NPhR	1.1	1.5	1.8
NR ₃ ⁺	1.4	1.75	2.05
NHCOR	1.1	1.5	1.9
NO ₂	1.61	2.05	2.5
SH	1.3	1.6	1.66
SR	1.25	1.6	1.9

Table 3.2: Chemical shifts of Methyl, Methylene and Methine protons (β -to the functional groups) in δ
3.2 Effect on chemical shifts of two or three functional groups:

$$(Y-CH_2-Z \text{ and } Y-CH-Z)$$

|
W

Shoolery's rules permit calculation of a shift position of a methylene group attached to two functional groups by the additive effect of the shielding constants in Table 3.3. The sum of the constants is added to δ 0.23, the position for CH₄

 $\therefore \qquad \delta = 0.23 + \Sigma \sigma i$ Thus, to calculate the shift for the -CH,- protons of C₆H₅CH₂Br

C,H,	-	1.85
Br	=	<u>2.33</u>
		4.18
add CH ₄		<u>0.23</u>
		4.41

Table 3.3: Shielding constants

Functional group	Shielding Constants
Y or Z	σί
CH ₃	0.47
Ċ=Ċ	1.32
C≡C	1.44
Ph	1.85
CF,	1.21
CF ₃	1.14
Cl	2.53
Br	2.33
I	.1.82
ОН	2.56
OR	2.36
OPh	3.23
OCOR	3.13
COR	1.70
COPh	1.84
COOR	1.55
CONH ₂	1.53
CONR,	1.59
C≡N	1.70

Functional group Y or Z	Shielding Constants σi
	1.57
NO	4,44
N=C=S	2.90
C≡C–Ar	1.70
NHCOR	2.27
N ₂	1.97
SŘ	1.64
OSO ₂ R	3.13

The shielding constants were used to prepare the following chart 3.3.1.

This chart can be used to find the shift position of a methylene –roup attached to two functional groups from the δ values in the box at the intersection of the horizontal and diagonal groups ("mileage chart"). The upper number in each box is an experimental value; the lower number is calculated from shoolery's constants.

Table 3.4 can be used to calculate chemical shifts of methyl $(Y-CH_3)$, methylene $(Y-CH_2-Z)$, or methine (Y-CH-Z) groups.

 $\alpha \beta$ | | Thus, the CH₂ chemical shifts in BrCH₂CH₂OCH₂CH₂ Br can be calculated.

CH ₂ No. 1		
CH ₂ (Table 3,	, 4, footnote a)	1.20
α–OR		2.35
β– Br		<u>0.60</u>
		4.15
CH ₂ No. 2		
CH ₂		1.20
αBr		2.18
β–OR		<u>0.15</u>
		3.53
Determined:	CH_2 No. 1 at ~	-δ 3. 8 0;
	CH_2 No. 2 at ~	δ 3.40

Table 3.4: Substitutent Effects on Chemical Shift C-C-H |

βα

Substituent	Type of Hydroge	n ^a Alpha shift	Beta shift
-C=C-	CH,	0.78	
	CH ₂	0.75	0.10
	CH		

Substituent	Type of Hydrogen ^a	Alpha shift	Beta shift
C=CR	CH ₃	1.08	
	5		
X (X=C + = O)	CU	1.40	0.25
(X=C or O)	CH ₃	1.40	0.35
Aryı	CH ₂	1.45	0.53
~ 1	СН	1.33	
Cl	CH ₃	2.43	0.63
	CH ₂	2.30	0.53
	СН	2.55	0.03
–Br	CH ₃	1.80	0.83
	CH ₂	2.18	0.60
	СН	2.68	0.25
_I	CH,	1.28	1.23
	CH ₂	1.95	0.58
	CH	2.75	0.00
–OH	CH,	2.50	0.33
	CH,	2.30	0.13
	СН	2.20	
-OR (R is saturated)	CH,	2.43	0.33
	CH,	2.35	0.15
	CH	2.00	
O O			
∥ ∥ OCROCOR	СН	2 88	0.38
$-\Omega$ Ar	CH	2.00	0.43
0111	CH 3	43 (esters only)	0.45
O II	en J.	(csters only)	
-CR, Where R is alkyl,	CH,	1.23	0.18
aryl, OH, OR', H, CO, or	N CH,	1.05	0.31
	ĊĤ	1.05	
-NRR'	CH,	1.30	0.13
	CH,	1.33	0.13
	CH	1.33	

^a standard positions are CH₃, $\delta 0.87$; CH₂, $\delta 1.20$; CH, $\delta 1.55$.

3.3: Chemical Shifts in Alicyclic and Heterocyclic Rings

Table 3.5: Chemical shifts in Alicyclic Rings

3.4: Chemical Shifts in Unsaturated and Aromatic Systems

 $\delta H = 5.25 + \Sigma zi$ i.e. 5.25 + Zgem + Zcis + Ztrans

For example, the chemical shifts of the alkene protons in

ŧ

Spectroscopic Data Chemistry

Ha	C ₆ H ₅ gem	1.35	5.25
	OR trans	- <u>1.28</u>	<u>0.07</u>
		0.07	δ,5.32
Hb	ORgem	1.18	5.25
	C_6H_5 trans	- <u>0.10</u>	<u>1.08</u>
		1.08	δ 6.33

Table 3.7: Substituent	Constants (Z)	for chemical	shifts of	substituted
Ethylenes (i	n CCl₄)			

Substituent R		Z	
	gem	cis	trans
-Н	0	0	0
–Alkyl	0.44	-0.26	0.29
–Alkyl ring ^a	0.71	-0.33	-0.30
CH,O,CH,I	0.67	0.02	0.07
CH ₂ S	0.53	-0.15	-0.15
-CH,Cl, -CH,Br	0.72	0.12	0.07
-CH,N	0.66	-0.05	-0.23
–C≡C	0.50	0.35	0.10
C≡N	0.23	0.78	0.58
C=C	0.98	-0.04	-0.21
-C=C conj ^b	1.26	0.08	0.01
-C=O	1.10	1.13	0.81
C=O conj ^b	1.06	1.01	0.95
-COOH	1.00	1.35	0.74
-COOH conj ^b	0.69	0.97	0.39
-COOR	0.84	1.15	0.56
-COOR conj ^b	0.68	1.02	0.33
∕H			
-Ć=O	1.03	0.97	1.21
/N		-	
-Ć=O	1.37	0.93	0.35
/CI			
Ć=O	1.10	1.41	0.99
-OR, R: aliph	1.18	-1.06	-1.28

•

Proton Magnetic Resonance Spectroscopy

–OR, R: Conj ^b	1.14	-0.65	-1.05
-OCOR	2.09	-0.40	0.67
-Aromatic	1.35	0.37	-0.10
–Cl	1.00	0.19	0.03
Br	1.04	0.40	0.55
R -N R : aliph R	0.69	-1.19	-1.31
–N R : Conj ^b R	2.30	-0.73	-0.81
–SR	1.00	0.24	-0.04
-SO ₂	1.58	1.15	0.95

^a Alkyl ring indicates that the double bond is part of the ring

^b The Z factor for the conjugated substitutent is used when either the substitutent or the double bond is further conjugated with other groups.

Table 3.8: Chemical Shifts of Miscellaneous Alkenes

Table 3.9: Chemical Shifts of Alkyne Protons

HC≡CR	1.73-1.88	
HC≡C–COH	2.23	
HC≡C–C≡CR	1.95	
HC≡CH	1.80	
HC≡CAr	2.71-3.37	
HC≡CC≡CR	2.60-3.10	

Table 3.10: Chemical Shifts of Protons on Monosubstituted Benzene Rings

Benzene	7.25
CH ₃ (omp)	7.16
$CH_3 CH_2 (omp)$	7.16
$(CH_3)_2 CH$ (omp)	7.16
$(CH_{3})_{3}C(0, m, p)$	7.32, 7.17, 7.04
$C = CH_2 (omp)$	7.25
C≡CH o, (mp)	7.44, 7.25
Phenyl o, m, p	7.44, 7.25, 7.16
CF ₃ (omp)	7.50
CH ₂ Cl (omp)	7.25
CHCl ₂ (omp)	7.36
CCl ₃ o, (mp)	8.10, 7.50

CH, OH (omp)	7.16
CH ₂ OR (omp)	7.25
CH, OCOCH, (omp)	7.25
CH, NH, (omp)	7.32
F m, p, o	7.25, 7.04, 6.95
Cl (omp)	7.25
Br, o, (pm)	7.51, 7.25
I o, p, m	7.71, 7.25, 7.04
OH m, p, o	7.04, 6.90, 6.75
OR m, (op)	7.36, 7.00
OCOCH ₃ (mp), o	7.25, 7.04
OTs ^a (mp), o	7.25, 7.04
CHO o, p, m	7.95, 7.64, 7.50
COCH ₃ o, (mp)	7.90, 7.55
COOH o, p, m	7.90, 7.44, 7.36
COOR o, p, m	8.16, 7.55, 7.44
COCl o, p, m	8.10, 7.55, 7.44
C≡N	7.55
NH ₂ , m, p, o	7.16, 6.84, 6.50
$N(CH_3)_2$ m (op)	7.16, 6.70
NHCÓRo	7.50
NH ₃ ⁺ o	7.64
NO_2 o, p, m	8.23, 7.71, 7.55
SR (omp)	7.25
N=C=O (omp)	7.04

 $^{a}OTs = p - Toluenesulfonyloxy group$

Table 3.11: Chemical shifts of protons on fused aromatic rings

Table 3.12: Chemical shifts of protons on Heteroaromatic Rings

RCH=O	9.70
PhCH=O	9.98
RCH=CHCH=O	9.78

HCOOR	8.05
HCONR ₂	8.05
HC(OR) ₃	5.00
RCH = NOH cis	7.25
RCH = NOH trans	6.65

3.5: Protons on Heteroatoms

Table 3.14: Protons subject to Hydrogen. Bonding Effects (protons on Heteroatoms)^a

Proton	Class	δ
ОН	Carboxylic acids	~13.2-~10.0
	Sulfonic acids	12.0-10.0
	Phenols	~7.5-~4.0
	Phenols (intramolecular	12.5-5.5
	H bond)	
	Alcohols	4.0-0.5
	In DMSO	6.2-4.2
	Enols (cyclic α - diketones)	6.9-6.0
	Enols (β – diketones)	16.5–14.5
	Enols (β – ketoesters)	10.6–9.6
	Water (Bulk water	5.0-4.5
	as suspended droplets or wall films)	
	Dissolved (monomeric)	1.5
	Water	
	in acetone	2.9–2.5
	in DMSO	3.4–3.2
	Oximes	12.0-9.0

.

Proton	Class	δ
NH ₂ and NHR	Alkyl and cyclic amines	3.0-0.5
	Aryl amines	5.0-3.0
	Amides	8.7-5.0
	Urethanes	7.6-4.6
	Amines in trifluoroacetic acid	8.7–6.0
SH	Aliphatic mercaptans	1.7–1.3
	Thiophenols	3.6–2.8

^a Solvent CDCl₃. Chemical shifts within a range are a function of concentration (The upper limit represents neat liquids, the lower limit, dilute solutions or extrapolations to infinite dilution)

3.6: Proton Spin Coupling Constants

Туре	Jab (Hz)	Jab Typical
Geminal		
$> c <_{H_{k}}^{H_{a}}$	0–30	12–15
Vicinal		
$CH_a - CH_b$ (free rotation)	6–8	7
$CH_a - (-C-)_n - CH_b$	0–1	0
hun Htt	4 Ha	
axax	6-14	8-10
ax–eq	0-5	2–3
eqeq	0–5	2–3

WNN Ha	cis 5-10	
hun Hb		
(cis or trans)	trans 5-10	
WWW Ha	cis 4–12	
(cis or trans)	trans 2-10	
Ha WWW Hb	cis 7–13	
(cis or trans)	trans 4-9	
$CH_a - OH_b$ (no exchange)	4–10	5
$C = CH_a - CH_b$	1-3	2-3
С=Сна-Сно	3-8	0
Ha C=C Hb	12–18	17
>c=c< ^{Ha} _{Hb}	03	0–2
Ha C=C Hb	6–12	10
CHa CHb	0–3	1–2
>c=c<	4–10	7

Ha C=C	CHb	0-3	1.5
Ha C=C	CHb	0–3	2
C=CHa-CHb=C	C	9–13	10
Ha C=C (ring)		3 member 4 member 5 member 6 member 7 member	0.5–2.0 2.5–4.0 5.1–7.0 8.8–11.0 9–13
		8 member	10-13
HaC≡CHb		9.5–9.8	9.1
CHa–C≡CHb		2–3	
–CHa–C≡C–C⊦	łb	2-3	
Ha Hb			6
Ha O	b		4
Ha O H	b		2.5
Ha	J (ortho)	6–10	9
	J (meta)	13	3
Hb	J (para)	0-1	~0
	J (2-3)	5-6	5
4	J (3-4)	7–9	8
5 3	J (24)	1-2	1.5
	J (3-5)	1-2	1.5
N 2	J (2–5)	0-1	1

J (2--6)

0-1

~0

		Proton Fluorine	
CH ₃ CH-x		5.5–7.0	
CH ₃ -CH ₂ -X		6.5-7.5	
3 8 2			
5 2	J (24)	~0	
4 []N	J (25)	1-2	
N	I (4-5)	3_4	
6 2	J (46)	2–3	
5 1 N	J (2-3)	0-1	
4	J(4-3)	4-0	
		1.6	
¥ Н	J (2-5)	1.5-2.5	
5 2	J (3-4) I (2-4)	3 −4 1_2	
4 3	J (23)	2-3	
4 3	J (1–3)	2–3	
	J (1–2)	2–3	
8	J (2–5)	3.2–3.7	3.4
5 2	J (2-4)	1.2–1.7	1.5
4	J (3–4)	3.4–5.0	4.0
2	J (2–3)	4.9-6.2	5.4
V	J (2–5)	1–2	1.5
5 2	J (24)	0-1	~0
4	J (3–4)	3.1–3.8	3.6
	J (2–3)	1.3–2.0	1.8

44-81

÷

 CHa−CFb		3–25
CHa-C-CFb		04
Ha C=C KFb		18
Ha C=C KFb		1240
F	o	610
	r	n-5-6
Ha		p-2
Proton Phosphorus		
>PH	6.	30–707
(CH ₃) ₃ P		2.7
(CH ₃) ₃ P=O		13.4
(CH ₃ CH ₂) ₃ P	13.7 (HCCP)	0.5 (HCP)
(CH ₃ CH ₂) ₃ P=O	16.3 (HCCP)	11.9 (HCP)
O II		
CH ₃ P(OR) ₂		10-13
$CH_{3}CP(OR)_{2}$		15–20
CH ₃ OP(OR) ₂	1	0.5–12
P[N(CH ₁) ₂] ₃		8.8
O=P [N(CH ₃) ₂] ₃		9.5

Compound ^a	δ _H (mult)	J _{HD}
Molecular Weight		
Acetic acid. d_4	11.53(1)	2
64.078	2.03 (5)	
Acetone $-d_6$	2.04(5)	2.2
64.117		
Acetonitrile – d ₃	1.93 (5)	2.5
44.071		
Benzene – d ₆	7.15 (br)	
84.152		
Chloroform – d	7.24(l)	
120.384		
Cyclohexane $-d_{12}$	1.38 (br)	
96.236		
Deuterium oxide	4.63	
20.028	(DSS) ^b	
	4.67	
	(TSP) ^b	
$1,2-Dichloroethane-d_4$	3.72 (br)	
102.985		
Diethyl-d ₁₀ ether	3.34 (m)	
84.185	1.07 (m)	
Diglyme –d ₁₄	3.49 (br)	
148.263	3.40 (br)	
	3.22 (5)	1.5
N, N –Dimethylformamide –d ₇	8.01 (br)	
80.138	2.91(5)	2
	2.74 (5)	2
Dimethyl – d ₆ sulphoxide	2.49 (5)	1.7
84.170		

3.7: Chemical Shifts, Multiplicities, and Coupling Constants of Residual Protons in Commercially Available Deuterated Solvents

.

•

Proton Magnetic Resonance Spectroscopy

p–Dioxane – d ₈	3.53 (m)		
96.156			
Ethyl alcohold ₆ (anh)	5.19(1)		
52.106	3.55 (br)		
	1.11 (m)		
Glyme – d_{10}	3.40(m)		
100.184	3.22(5)	1.6	
Hexafluoroacetone	5.26 (1)		
deuterate, 198.067			
HMPT-d ₁₈	2.53 (2 × 5)	2(9.5)	
197.314			
Methyl alcohol – d_4	4.78(1)36.067	3.30(5)	1.7
Methylene chloride $-d_2$	5.32(3)	1	
86.945			
Nitrobenzene -d ₅	8.11 (br)		
128.143	7.67 (br)		
	7.50 (br)		
Nitromethane -d ₃	4.33 (5)	2	
64.059			
Isopropyl alcohol –d ₈	5.12(1)		
68.146	3.89 (br)		
	1.10 (br)		
Pyridine – d ₅	8.71 (br)		
84.133	7.55 (br)		
	7.19 (br)		
Tetrahydrofuran – d ₈	3.58 (br)		
80.157	1.73 (br)		
Toluene – d ₈	7.09 (m)		
100.191	7.00 (br)		
	6.98 (m)	2.3	
	2.09(5)		
Trifluoroacetic acid –d	11.50(1)		
115.030			

~

2,2,2-Trifluoroethyl	5.02(1)	
alcohol – d ₃		
103.059	3.88 (4 × 3)	2(9)

^a Purity (Atom % D) up to 99.96% ("100%") for several solvents.

^b DSS is 3-(trimethylsilyl)-1-propane sulfonic acid, sodium salt (or sodium 2,2-dimethyl-2-silapentane-5-sulfonate). TSP is sodium -3-trimethylpropionate -2, 2, 3, 3-d₄. Both are reference standards used in aqueous solutions.

Type and group δ τ 1. TMS 10.00 2. -CH,-Cyclopropane 9.78 0.22 3. CH₂-CN 8.92-9.12 1.08-0.88 CH₂--C-(sat.) 4. 9.05-9.15 0.95-0.85 (8.7 - 9.3)(1.3 - 0.7)CH₂-C-CO-R 8.88-9.07 1.12-0.93 5. CH₂-C-N-CO-R 6. 1.20 8.80 7. 8.52 1.48 $-CH_2-(sat.)$ 8. 8.52-8.80 1.48-1.20 --CH,- C--O-COR and 9. 8.50 1.50 -CH,-C-O-Ar 10. RSH, $8.5 - 8.9^{a}$ 1.5 - 1.1RNH, (conc. less than 11. 8.5-8.9ª 1.5 - 1.11 mole in inert solvent) --CH,--C--C=C--12. 8.40-8.82 1.60-1.18 -CH2-CN 13. 8.38-8.80 1.62 - 1.201.65-1.40 14. -C-H (sat.) 8.35-8.60 -CH2-C-Ar 15. 8.22-8.40 1.78 - 1.60-CH,-C-O-R 16. 8.19-8.79 1.81 - 1.21CH₃-C=NOH 8.19 1.81 17. --CH,--C--I 8.14-8.35 1.86 - 1.6518.

NMR table showing correlations of chemical shifts of protons

.

19.	-CH,-C-CO -R	8.10-8.40	1,9-1,4
20.	CH ₃ -C=C	8.1-8.4	1.9-1.4
21.	CH ₃ -C=C-	8.09-8.13	1.911.87
	I O–CO–R		
22.	-CH,-C=C-O-R	8.07	1.93
23.	-CH,-C-Cl	8.04-8.40	1.96-1.60
24.	CH ₃ –C=C–	7.97-8.06	2.03-1.94
	COOR or CN		
25.	CH ₂ C-Br	7.97-8.32	2.03-1.68
26.	CH ₃ -C=CCOR	7.94-8.07	2.06-1.93
27.	-CH,-C-NO,	7.93	2.07
28.	CH,CSO,R	7.84	2.16
29.	CO	7.71	2.29
	Сн		
30.	CH,C=C	7.69-8.17	2.31-1.83
31.	CH ₃ -N-N	7.67	2.33
32.	CH ₂ COR	7.61–7.98 ^b	2.39-2.02
33.	CH ₃ -SO-R	7.50	2.5
34.	CH ₃ Ar	7.50-7.75	2.502.25
		(7.5–7.9)	(2.5-2.1)
35.	-CH ₂ -S-R	7.47-7.61	2.53-2.39
36.	CH ₃ COSR	7.46–7.67	2.54-2.33
37.	-CH ₂ C≡N	7.42	2.58
38.	CH ₃ C=O	7.4–7.9	2.6-2.1
		(7.4-8.1)	(2.6–1.9)
39.	CH ₃ -SC≡N	7.37	2.63
40.	CH_3 – CO – $C = C or$	7.32-8.17	2.68-1.83
	CH ₃ –CO–Ar		
41.	CH ₃ COCl or Br	7.19-7.34	2.81-2.66
42.	CH ₃ -S-	7.2–7.9	2.8-2.1
43.	CH ₃ –N	7.0-7.9	3.0-2.1
44.	C=CC≡CH	7.13	2.87

45.	-CH ₂ -SO ₂ -R	7.08	2.92
46.	–C≡C–H, nonconjugated	7.35-7.55	2.65-2.45
47.	C≡C-H, conjugated	6.9-7.2	3.1-2.8
48.	Ar-C=C-H	6.95	3,05
49.	CH,(C=C-),	6.95-7.10	3.05-2.9
50.	CH ₂ -Ar	6.94-7.47	3.06-2.53
51.	–CH,–I	6.80-6.97	3.2-3.03
52.	-CH ₂ -SO ₂ F	6.72	3.28
53.	Ar–CH,–N	6.68	3.32
54.	-CH ₂ -N-Ar	6.636.72	3.37-3.28
55.	Ar-CH,-C=C-	6.62-6.82	3.38-3.18
56.	$-CH_2 - N^+ -$	6.60	3.40
57.	-CH ₂ -Cl	6.43-6.65	3.57-3.35
58.	CH ₂ -O-R	6.42-7.69	3.58-2.31
59.	CH ₃ –O–	6.2-6.5	3.8-3.5
		(6.0–6.7)	(4.0-3.3)
60.	CH ₂ Br	6.42-6.75	3.58-3.25
61.	CH ₃ –O–SO–OR	6.42	3.58
62.	CH ₂ -N=C=S	6.39	3.61
63.	CH ₃ -SO ₂ -Cl	6.36	3.64
64.	Br–CH ₂ –C≡N	6.30	3.70
65.	$-C \equiv C - CH_2 - Br$	6.18	3.82
66.	Ar–CH ₂ –Ar	6.08-6.19	3.92-3.81
67.	Ar–NH ^a ₂ , Ar–NH–R ^a ,	6.0-6.6	4.0-3.4
	and Ar–NH–Ar ^a	(5.7-6.7)	(4.3–3.3)
68.	CH ₃ OSO ₂ OR	6.06	3.94
69.	$-C=C-CH_2-O-R$	6.03-6.10	3.97-3.90
70.	-C=C-CH ₂ -Cl	5.96-6.04	4.04-3.96
71.	Cl−CH ₂ −C≡N	5.93	4.07
72.	H,-C=C-O-CH,-C=C	5.87-6.17	4.13-3.83
73.	-C≡CCH ₂ Cl	5.84-5.91	4.16-4.09
74.	$-C=C-CH_2-OR$	5.82	4.18
75.	CH ₂ OCOR or	5.71-6.02	4.29-3.98
	$-CH_2 - O - Ar$		

76.	$-CH_2 - NO_2$	5.62	4.38
77.	Ar-CH ₂ -Br	5.57-5.59	4.43-4.41
78.	Ar-CH ₂ -OR	5.51-5.64	4.49-4.36
79.	ArCH2Cl	5.50	4.50
80.	$-C=CH_2$	5.37	4.63
81.	-C=CH-, acyclic,	4.3-4.9	5.7-5 *
	nonconjugated	(4.1–4.9)	(5.9–51)
82.	–C=CH–, Cyclic,	4.3-4.8	5.7-5.2
	nonconjugated		
83.	-C=CH ₂	4.3-4.7	5.7-5.3
		(3.75-4.8)	(6.25–5.2)
84.	-CH(OR) ₂	4.80-5.20	5.20-4.80
85.	ArCH ₂ OCOR	4.74	5.26
86.	R-O-H (conc. less	$4.8 - 7.0^{a}$	5.2-3.0ª
	than one mole in inert solv	ent)	
87.	Ar-C=CH-	4.60-4.72	5.40-5.28
88.	-CH=C-O-R	4.45-5.46	5.55-4.54
89.	–CH=C–C≡N	4.25	5.75
90.	-C=CH-CO-R	3.95-4.32	6.05-5.68
91.	R-CO-CH=C-CO-R	3.87-3.97	6.13-6.03
92.	Ar-CH=C-	3.72-3.77	6.28-6.23
93.	-C=C-H, conjugated	3.3-4.5	6.7–5.5
		(2.2-4.7)	(7.8–5.3)
94.	C=C-H, acyclic,	3.5-4.0	6.5-6.0
	conjugated	(2.9–4.5)	(7.1–5.5)
95.	H-C = C-	3.60-3.70	6.40-6.30
	H CO-R		
96.	-C=CH-O-R	3.55-3.78	6.45-6.22
97.	BrCH==C-	3.00-3.38	7.00-6.62
98.	CH=C-COR	2.96-4.53	7.045.47
99.	C=ChOCOCH ₃	2.75	7.25

100			
100.	N	2.6-2.7	7.4–7.3
101.	H RCONH	2.3-3.9	7.7–6.1
		(1.5-4.5)	(8.5–5.5)
102.	Ar-CH-C-CO-R	2.28-2.62	7.72-7.38
103.	ArH, benzenoid	2.0-3.4	8.0-6.6
		(0.5-4.0)	(9.5–6.0)
104.	ArH, nonbenzenoid	1.4-3.8	8.6-6.2
		(1.0-6.0)	(9.0–4.0)
	// ⁰		
105.	H-Ć	1.9-2.1	8.1-7.9
	`м́		
	// ⁰		
106.	H-C	1.8–2.0	8.2-8.0
107	0- 0-0 cuo	0.22.0.57	0 (8 0 12
107.	-C=C-CHO,	0.32-0.57	9.68-9.43
	alipnatic, α , p unsat.		
108.	R–CHO, aliphatic	0.2–0.3	9.8–9.7
		(0.2–0.5)	(9.8–9.5)
109.	Ar–CHO	0.00.3	10.0–9.7
		(-0.1 to 0.5)	(10.1 to 9.5)
110.	R-COOH	-1.52 to -0.97	11.52 to 10.97
111.	-SO ₃ H	-2.0 to -1.0	12.0 to 11.0
112.	-C=CCOOH	-2.18 to -1.57	12.18 to 11.57
113.	RCOOH, dimer	-2.2 to -1.0	12.2 to 11.0
114.	AR-OH, intramolecularly	2.5 to0.5	12.5 to 10.5
	bonded	(-5.5 to -0.5)	(15.5 to 10.5)
115.	AR-OH, polymeric	2.3 to 5.5 ^a	7.7 to 4.5 ^a
	association		
116.	Enols	-6.0 to -5.0	16.0 to 15.0

.

Proton Magnetic Resonance Spectroscopy

Normally protons resonate within the range shown. In cases in which protons resonate outside the range, the limits are shown by values in parentheses.

- ^a The position of these protons depends on concentration, temperature, and the presence of other exchangeable protons. Values for amino protons depend on the basicity of the nitrogen atom.
- ^b In these compounds R=H, alkyl, aryl, OH, OR or NH₂.

Exercises and Problems:

Problem 1. The compounds $CHCl_2$ -CHCl_2($\delta=6$ ppm) and CCl_3 -CH_2Cl ($\delta=3.9$ ppm) produce single NMR signals owing to the fact that their hydrogen atoms are chemically equivalent. Explain the difference between the chemical shift for these compounds.

Answer: Halogens shift the proton signal downfield and the shift is the larger, the larger the number of halogen atoms.

Problem 2. Toluene, p-xylene and mesitylene have two peaks each in their NMR spectra. Assign the spectra shows in fig. shown below (1, 2 and 3) to these compounds.

Alkyl Aromalic 3:5 H, CH, 3:2 3:1

Answer: The signal with δ =2 ppm is produced by the protons of the methyl group and the signal at about 7 ppm by the aromatic protons. As the lines have approximately the same width, the ratios of the peak areas are 3:5, 3:2 and 3:1 in the first, second and third spectra, respectively. Hence, the spectra can be assigned as follows: 1. Toluene, 2. p-xylene, 3. mesitylene.

Problem 3. Identify the structures of the compounds $C_3H_3Cl_5$ (1) and $C_3H_5Cl_3$ (2) with the following NMR spectra:

(1) Triplet (δ =4.52 ppm) and doublet (δ =6.07 ppm) with the peak area ratio of 1:2

(2) Singlets (δ =2.20 ppm and δ =4.02 ppm) with the peak area ratio of 3:2

Answer: The triplet with δ =4.52 ppm and the doublet with δ =6.07 ppm indicate that the methine group (1H) has a neighbour with two protons (2H). Hence the compound (1) has the following structure:

The singlets in the spectrum of the compound (2) indicate that two proton groups are separated by an aprotic group making spin–spin coupling impossible. Thus, the compound (2) has the following structure:

Problem 4. Fig. shown below gives two spectra for the compounds with the same empirical formula $C_8H_{10}O$. Determine the structure and explain the differences in the chemical shifts.

Answer: 1. C₆H₅--CH₂--O--CH₃ 2. C₆H₅--O--CH₂--CH₃

In the compound (1) the oxygen atom is linked to the groups CH_2 and CH_3 and therefore both peaks are shifted downfield (the chemical shifts are larger) and there is no spin-spin coupling between the protons of these groups.

In the compound (2) the oxygen atom affects the group CH_2 (downfield shift of the peak) and the group C_6H_5 . The aromatic protons become nonequivalent and the signal is split into a multiplet owing to their coupling.

The two non-equivalent protons, which are coupled to each other are in the aromatic region. With an index value of 3 and only $3C^1$ atoms, only imidazole and thiazole are the possible aromatic compounds. But the former, imidazole – thiol has four non-equivalent protons as against three observed. So the compound is aminothiazole. The J value indicates vicinal positions for the aromatic and hence the compound is 2-aminothiazole.

Problem 6. Why is an internal standard used in obtaining an nmr spectrum? Why is TMS a good standard?

In NMR spectroscopy, we are trying to determine the strength of magnetic field which is required to bring about the resonance of certain nuclei in a given compound. It is natural to expect, therefore, that a NMR spectrum would be a plot of signal strength versus magnetic field, in units of milligauss. Measuring a magnetic field is difficult. However, it is convenient to determine accurately the values of absorption frequencies ($\because \upsilon = \gamma Ho/2\pi$) of protons relative to those of a suitable standard. As only relative absorption values can be obtained, a suitable standard must be used.

The most logical standard would be a "bare proton", having no shielding electrons, but experimentally this is not possible, and instead one uses as standards compounds having sharp resonance peaks. The chemical shift may then be expressed as the difference between the resonance frequency of the protons in the sample (v_{sample}) and the resonance frequency of the protons in the standard ($v_{standard}$)

 $(v_{sample} - v_{TMS})$

Tetramethylsilane (TMS) is commonly used as an internal reference TMS is a good standard because

- (i) TMS is unreactive (except with con. H_2SO_4 with which it should not be used) and it does not associate with the sample.
- (ii) TMS is symmetrical, and thus gives a sharp peak of 12 equivalent protons.
- (iii) It is extremely volatile, and thus allows recovery of the pure sample.
- (iv) It is soluble in most organic solvents. Methyl protons of TMS are strongly shielded and therefore absorbs at higher field than almost all organic protons.

It also enables us to define a scale for the spectra by arbitrarily assigning a frequency value for TMS protons equal to zero.

Problem 7. Which references and solvents are used to take NMR spectra of samples? Why?

Proton Magnetic Resonance Spectroscopy

To determine the resonance spectrum of the protons of an organic compound, one needs anywhere between 1 and about 30 mg of the sample. The sample is normally used in the form of its dilute solution (about 2 to 10%) in a solvent which contains no hydrogen atoms of its own.

For samples of low polarity, carbon tetrachloride, deuterated chloroform, CDCl₃ and deuterated benzene C_6D_6 , are often used. On the other hand if the sample is soluble only in polar solvents, deuterium oxide (D_2O), acetone – D_6 (CD_3COCD_3), or dimethyl sulfoxide – D_6 [(CD_32SO] are often employed.

The internal standard used to locate the resonance frequency of most protons is tetramethyl silane (TMS) [(CH_3)₄ Si], which one adds to the sample before recording the spectrum. TMS is commonly used as an internal reference because it is chemically inert, symmetrical, volatile and soluble in most organic solvents, it gives a single sharp absorption peak and absorbs at higher field than almost all organic protons.

TMS cannot be used as an internal reference for substances dissolved in D_2O . For aqueous solutions, the standard used is often the sodium salt of 2,2-dimethyl-2-silapentane-5-sulfonic acid or DSS.

(CH₃)₃ SiCH₂CH₂CH₂SO₃Na

The methyl groups in this compound provide a suitable reference peak.

Acetonitrile and dioxane are also used as references in aqueous solution.

Problem 8. Explain the abnormally large shift of aldehydic proton in nmr spectra.

If molecules contain protons that are sterically oriented so that they are close to double or triple bonded groups, there will generally be a diamagnetic anisotropic effect of some kind.

The magnetic fields induced by pi electrons are directional, i.e., unsymmetrical. A measurement which varies with the direction in which the measurement is taken is said to be anisotropic. Because the effects of molecular fields induced by π electrons are direction dependent, these are, therefore termed anisotropic effects. These effects are contrasted to inductive effects, which are symmetrical around the proton. Induced magnetic field $H = H_0$ applied magnetic field

Anisotropic effects occur in addition to the ever present molecular field, induced by sigma-bond electrons.

Thus the downfield shift of aldehyde proton (δ 9–10) is not only due to the deshielding effect of sp² carbon (sp² carbon has high s character and withdraws electrons, deshielding the hydrogen) but also due to anisotropy of the C=O. These two effects combined together deshield the attached hydrogens in these systems.

Just like in benzene, in aldehyde, the induced magnetic field (by the π -electrons) in the region where protons are located is oriented in the same direction as the applied field. A smaller field is therefore, required for resonance resulting in their deshielding. "The highly deshielded position of aldehydes is attributed to a combination of a strong inductive effect and the diamagnetic anisotropy of the carbonyl group."

¹³C NMR Spectroscopy

4.1: The ¹³C chemical shifts of Linear and Branched Alkanes:

Alkane groups unsubstituted by heteroatoms absorb downfield from TMS to about 60 ppm. (Methane absorbs at 2.5 ppm upfield from TMS.) Within this range we can predict the chemical shifts of individual ¹³C atoms in a straight chain or branched chain hydrocarbon from the data in Table 4.1 and the formula $\delta = -2.5 + \Sigma nA$.

Where δ = Predicted shift for a carbon atom.

A = Additive shift parameter.

n = number of carbon atoms for each shift parameter (-2.5 is the shift of the ¹³C of methane).

The calculated (and observed) shifts for the carbon atoms of 3-methylpentane are

For carbon atom 1, we have 1α , 1β -, 2γ and 1δ -carbon atoms.

$$\delta_1 = -2.5 + (9.1 \times 1) + (9.4 \times 1) + (-2.5 \times 2) + (0.3 \times 1) = +11.3$$

Carbon atom 2 has 2 α -, 2 β -, and 1 γ carbon atoms. Carbon atom 2 is a 2° carbon with a 3° carbon attached [2°(3°) = -2.5]

$$\delta_2 = -2.5 + (9.1 \times 2) + (9.4 \times 2) + (-2.5 \times 1) + (-2.5 \times 1) = 29.5$$

Carbon atom 3 has 3 α - and 2 β - carbon atoms, and it is a 3° atom with two 2° atoms attached [3° (2°) = -3.7]. Thus $\delta_3 = -2.5 + (9.1 \times 3) + (9.4 \times 2) + (-3.7 \times 2) = +36.2$

Carbon atom 6 has, 1α -, 2β -, and 2γ carbon atoms, and it is a 1° atom with a 3° atom attached [1° (3°) = -1.1]. Thus, $\delta_6 = -2.5 + (9.1 \times 1) + (9.4 \times 2) + (-2.5 \times 2) + (-1.1 \times 1) = +19.3$

The agreement for such calculations is very good. It is essential that the reference compounds used for such additivity culculations be structurally similar to the compound of interest.

¹³ C Atoms	Shift (ppm) (A)	
α	+9.1	
β	+9.4	
γ	-2.5	
δ	+0.3	
€	+0.1	
1° (3°)ª	-1.1	
1° (4°) ^a	-3.4	
2° (3°)ª	-2.5	
2° (4°)	-7.2	
3° (2°)	-3.7	
3° (3°)	-9.5	
4° (1°)	-1.5	
4° (2°)	-8.4	

Table 4.1: The ¹³C shift parameters in some linear and branched hydrocarbons

^a The notations 1° (3°) and 1° (4°) denote a CH₃ group bound to a R₂CH group and to a R₃C group, respectively. The notation 2° (3°) denotes a RCH₂ group bound to a R₂CH group, and so on.

Table 4.2 lists the shifts in some linear and branched alkanes.

Compound	C-1	C2	C3	C-4	C-5
Methane	-2.3				
Ethane	5.7				
Propane	15.8	16.3	15.8		
Butane	13.4	25.2	25.2		
Pentane	13.9	22.8	34.7	22.8	13.9
Hexane	14.1	23.1	32.2	32,2	23.1
Heptane	14.1	23.2	32.6	29.7	32.6
Octane	14.2	23.2	32.6	29.9	29.9
Nonane	14.2	23.3	32.6	30.0	30.3
Decane	14.2	-23.2	32.6	31.1	30.5
Isobutane	24.5	25.4			
Isopentane	22.2	31.1	32.0	11.7	
Isohexane	22.7	28.0	42.0	20.9	14.3
Neopentane	31.7	28.1			
2,2-Dimethylbutane	29.1	30.6	36.9	8.9	
3-Methylpentane	11.5	29.5	36.9	(18.8,3CH ₃)	
2,3–Dimethylbutane	19.5	34.3			
2,2,3–Trimethyl butane	27.4	33.1	38.3	16.1	
2,3–Dimethylpentane	7.0	25.3	36.3	(14.6, 3–CH ₃)	

 Table 4.2: The ¹³C Shifts for some Linear and Branched chian Alkanes (ppm from TMS).

			•	1	
Ŷ	<u>α</u>		Y /		
	β	∕ _Y ∕	β	β	`
	Terminal		Internal		
Y	α		β	· · · · · · · · · · · · · · · · · · ·	γ
	Terminal	Internal	Terminal	Internal	
CH,	+9	+6	+10	+8	-2
CH=CH,	+20		+6		-0.5
C≡CH ́	+4.5		+5.5		-3.5
СООН	+21	+16	+3	+2	2
COO-	+25	+20	+5	+3	-2
COOR	+20	+17	+3	+2	-2
COCI	+33	+28		+2	
CONH,	+22		+2.5		-0.5
COR	+30	+24	+1	+ 1	-2
СНО	+31		0		-2
Phenyl	+23	+17	+9	+7	-2
OH	+48	+41	+10	+8	-5
OR	+58	+51	+8	+5	4
OCOR	+51	+45	+6	+5	3
NH,	+29	+24	+11	+10	-5
NH,+	+26	+24	+8	+6	-5
NHR	+37	+31	+8	+6	4
NR,	+42				-3
NR ⁺	+31		+5		-7
NO	+63	+57	+4	+4	
CN	+4	+ 1	+3	+3	3
SH	+11	+11	+12	+11	4
SR	+20		+7		-3
F	+68	+63	+9	+6	-4
Cl	+31	+32	+11	+10	-4
Br	+20	+25	+11	+10	-3
I	6	+4	+11	+12	-1

Table 4.3:	Incremental S	Substituent	Effects (opm) on H	Replacemer	nt of H by
	Y in Alkanes.	Y is Termi	nal or Int	ernal ^a (+	downfield,	-upfield)
				Y		

a Add these increments to the shift values of the appropriate carbon atom in Table 4.2 or to the shift value calculated from Table 4.1.

From Table 4.3, the approximate shifts for the carbon atoms of, for example, 3-pentanol, may be calculated from the values for pentane in Table 4.2; that

is, the increment for the functional group in Table 4.3 is added to the appropriate value in Table 4.2 as follows:

d

The chemical shifts of the CH_2 groups in monocyclic alkanes are given in Table 4.4. Each ring skeleton has its own set of shfit parameters. Rough estimates for substituted rings can be made with the substitution increments in Table 4.3. Table 4.5 presents chemical shifts for several saturated heterocyclics.

Table 4.4: Chemical shifts of Cycloalkanes (ppm from TMS)

 	-
 C ₃ H ₆	-2.9
C_4H_8	22.4
C ₅ H ₁₀	25.6
C_6H_{12}	26.9
$C_{7}H_{14}$	28.4
C_8H_{16}	26.9
C ₉ H ₁₈	26.1
$C_{10}H_{20}$	25.3

4.2 Alkenes and Alkynes

The sp² carbon atoms of alkenes substituted only by alkyl groups, absorb in the range of about 110–150 ppm downfield from TMS. The double bond has a rather small effect on the shift of the sp³ carbon in the molecule. Calculation of approximate shifts can be made from the following parameters where (α , β , and γ represent substituents on the same end of the double bond as the alkene carbon of interest, and (α' , β' , and γ' represent substituents on the far side.

α	+10.6
β	+7.2
γ	-1.5
α'	-7.9
β'	-1.8
γ'	-1.5
Z (cis) correction	-1.1

These parameters are added to 123.3 ppm, the shift for ethylene. We can calculate the values for cis-3-methyl-2-pentene as follows:

$$\begin{array}{c} \overset{C}{H_{3}} H \\ H_{3} \overset{\beta}{C} \overset{\alpha}{-} \overset{C}{} \overset{\beta}{-} \overset{\alpha}{-} \overset{\beta}{-} \overset{\alpha}{-} \overset{\beta}{-} \overset{$$

0

The measured values are C-3 = 137.2 and C-2 = 116.8. The agreement is fair. The allylic carbon of a (Z) alkene is usually at lower field from that of

an (E) alkene by about 4–6 ppm. Alkene carbon atoms in polyenes are treated as though they were alkane carbon substituents on one of the double bonds. Thus in calculating the shift of C–2 in 1,4–pentadiene, C–4 is treated like a β –sp³ carbon atom.

Representative alkenes are presented in Table 4.6.

There are no simple rules to handle polar substituents on an alkene carbon. Shifts for several substituted alkenes are presented in Table 4.7.

The central carbon atom (=C=) of alkyl substituted allenes absorbs far downfield in the range of about 200-215 ppm, whereas the terminal atoms (C=C=C) absorb upfield in the range of about 75–97 ppm.

 $CH_{2} = C = CH_{2}$

•

Table 4.7: Chemical Shifts of substituted Alkenes (ppm from TMS)

The sp carbon atoms of alkynes substituted only by alkyl groups absorb in the range of approximately 65–90 ppm (Table 4.8). The triple bond shifts the sp³ carbon atoms directly attached about 5–15 ppm upfield relative to the corresponding alkane. The terminal \equiv CH absorbs upfield from the internal \equiv CR. Alkyne carbon atoms with a polar group directly attached absorb from about 20–95 ppm.

C-1	C-2	C3	C4	C-5	C6
67.0	84.7				
	73.6				
67.4	82.8	17.4	29.9	21.2	12.9
1.7	73.7	76.9	19.6	21.6	12.1
14.4	12.0	79.9			
	01	28 0 88.4			
	67.0 67.4 1.7 14.4 OCH,CH,	С.1 С-2 67.0 84.7 73.6 73.6 67.4 82.8 1.7 73.7 14.4 12.0 ОСН,СН, СН	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 4.8: Alkyne Chemical Shifts (ppm)

4.3: Aromatic Compounds

Benzene carbon atoms absorb at 128.5 ppm, neat or as a solution in $CDCI_3$ or CCI_4 . Substituents shift the attached aromatic carbon atom as much as \pm 35 ppm.

Fused ring absorptions are as follows: Naphthalene: C-1, 128.1; C-2, 125.9; C-4a, 133.7 Anthracene: C-1, 130.1; C-2, 125.4; C-4a, 132.2; C-9, 132.6 Phenanthrene: C-1, 128.3; C-2, 126.3; C-3, 126.3; C-4, 122.2; C-4a, 131.9*; C-9, 126.6; C-10a, 130.1*.

Incremental shifts from benzene for the aromatic carbon atoms of representative monosubstituted benzene rings (and shifts from TMS of carbon containing substituents) are given in Table 5.9.

*Assignment uncertain.

Substituent	C-1 (Attach- ment)	C2	C3	C4	C ¹ of substituents (ppm from TMS)
Н	0.0	0.0	0.0	0.0	
CH,	9.3	+0.7	-0.1	2.9	21.3
СН,СН,	+15.6	-0.5	0.0	-2.6	29.2(CH,), 15.8(CH,)
CH(CH,),	+20.1	-2.0	0.0	-2.5	34.4(CH), 24.1(CH,)
C(CH,)	+22.2	-3.4	-0.4	-3.1	34.5(C), 31.4(CH ₃)
CH=CH,	+9.1	-2.4	+0.2	0.5	137.1(CH), 113.2(CH,)
C≡CH	-5.8	+6.9	+0.1	+0.4	84.0(C), 77.8(CH)
C,H,	+12.1	-1.8	-0.1	-1.6	
CH ₂ OH	+13.3	-0.8	-0.6	0.4	64.5

Table 4.9: Incremental shifts of the Aromatic Carbon Atoms of Monosubstituted Benzenes (ppm from Benzene at 128.5 ppm, +downfield, – upfield). Carbon Atom of substituents in parts per million from TMS

•

+7.7	~0.0	~0.0	~0.0	20.7(CH ₃), 66.1(CH ₂). 170.5 (C=O)
126.6	10.7	(17		
+26.6	-12.7	+1.0	-7.5	54.1
+31.4	-14.4	+1.0	-1.1	54.1
+29.0	-9.4	+1.6	د.د-	
+22.4	_7 1	-04	_32	23 9(CH) 169 7 (C=O)
122.7	-/.1	- U.H	5.2	25.7(013), 105.7(0-0)
+8.2	+1.2	+0.6	+5.8	192.0
+7.8	-0.4	-0.4	+2.8	24.6(CH ₃), 195.7 (C=O)
+0 1	+15	_0 2	+3.8	1964(C=0)
7.1	1.5	-0.2	15.0	170.4 (C O)
-5.6	+1.8	+0.7	+6.7	
+2.9	+1.3	+0.4	+4.3	168.0
+2.0	+12	-01	+4 8	51.0(CH) 166.8 (C=O)
12.0	1.2	0.1	.4.0	51.0(0113), 100.0(0 0)
+4.6	+2.9	+0.6	+7.0	168.5
-16.0	+3.6	+0.6	+4.3	119.5
+19.2	-12.4	+1.3	-9.5	
+22.4	-15.7	+0.8	-11.8	40.3
	0.0	10.2	5.6	
+11.1	-9.9	+0.2	-5.0	
+19.6	-5.3	+0.9	+6.0	
+5.7	-3.6	+1.2	-2.8	129.5
+35.1	-14.3	+0.9	-4.5	
+6.4	+0.2	+1.0	-2.0	
-5.4	+3.4	+2.2	-1.0	
_32.2	+9.9	+2.6		
	2.1	+0.4	-7.5	
+2.0	-3.1	+0.4	+3.4	
+2.3	+0.6	+0.2	-3.3	
+10.2	-1.8	+0.4	-3.6	15.9
	+7.7 +26.6 +31.4 +29.0 +22.4 +8.2 +7.8 +9.1 -5.6 +2.9 +2.0 +4.6 -16.0 +19.2 +22.4 +11.1 +19.6 +5.7 +35.1 +6.4 -5.4 -32.2 +2.6 +2.3 +10.2	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$+7.7$ ~ 0.0 ~ 0.0 $+26.6$ -12.7 $+1.6$ $+31.4$ -14.4 $+1.0$ $+29.0$ -9.4 $+1.6$ $+22.4$ -7.1 -0.4 $+8.2$ $+1.2$ $+0.6$ $+7.8$ -0.4 -0.4 $+9.1$ $+1.5$ -0.2 -5.6 $+1.8$ $+0.7$ $+2.9$ $+1.3$ $+0.4$ $+2.0$ $+1.2$ -0.1 $+4.6$ $+2.9$ $+0.6$ -16.0 $+3.6$ $+0.6$ $+19.2$ -12.4 $+1.3$ $+22.4$ -15.7 $+0.8$ $+11.1$ -9.9 $+0.2$ $+19.6$ -5.3 $+0.9$ $+5.7$ -3.6 $+1.2$ $+35.1$ -14.3 $+0.9$ $+6.4$ $+0.2$ $+1.0$ -5.4 $+3.4$ $+2.2$ -32.2 $+9.9$ $+2.6$ $+2.6$ -3.1 $+0.4$ $+2.3$ $+0.6$ <	$+7.7$ ~ 0.0 ~ 0.0 ~ 0.0 ~ 0.0 $+26.6$ -12.7 $+1.6$ -7.3 $+31.4$ -14.4 $+1.0$ -7.7 $+29.0$ -9.4 $+1.6$ -5.3 $+22.4$ -7.1 -0.4 -3.2 $+8.2$ $+1.2$ $+0.6$ $+5.8$ $+7.8$ -0.4 -0.4 $+2.8$ $+9.1$ $+1.5$ -0.2 $+3.8$ -5.6 $+1.8$ $+0.7$ $+6.7$ $+2.9$ $+1.3$ $+0.4$ $+4.3$ $+2.0$ $+1.2$ -0.1 $+4.8$ $+4.6$ $+2.9$ $+0.6$ $+7.0$ -16.0 $+3.6$ $+0.6$ $+4.3$ $+19.2$ -12.4 $+1.3$ -9.5 $+22.4$ -15.7 $+0.8$ -11.8 $+11.1$ -9.9 $+0.2$ -5.6 $+19.6$ -5.3 $+0.9$ $+6.0$ $+5.7$ -3.6 $+1.2$ -2.8 $+35.1$ -14.3 $+0.9$ -4.5 $+6.4$ $+0.2$ $+1.0$ -2.0 -5.4 $+3.4$ $+2.2$ -1.0 -32.2 $+9.9$ $+2.6$ -7.3 $+2.6$ -3.1 $+0.4$ $+3.4$ $+2.3$ $+0.6$ $+0.2$ -3.3 $+10.2$ -1.8 $+0.4$ -3.6

SO ₂ NH ₂	+15.3	-2.9	+0.4	+3.3
Si(CH,),	+13.4	+4.4	-1.1	-1.1

Shifts from benzene for polysubstituted benzene ring carbon atoms can ,be approximated by applying the principle of substituent additivity. For example, the shift from benzene for C-2. of the disubstituted compound 4-chlorobenzonitrile is calculated by adding the effect for an ortho CN group (+3.6) to that for a meta Cl group (+1.3):

CAtom	Calculated	Observed	CAtom	Observed	CAtom	Observed
1	-18.0	-16.6	1	-16.0	4	-2.0
2	+4.6	+5.1	2	+3.6	3	+ 1.0
3	+ 0.8	+1.3	3	+0,6	2	+0.2
4	+10.7	+10.8	4	+4.3	1	+6.4

Compound	C2	C3	C-4	C-5 C-6	Substituent
Furan	142.7	109.6			· · · · · · · · · · · · · · · · · · ·
2-Methyl furan	152.2	106.2	110.9	141.2	13.4
Furan-2-Carboxaldehyde	153.3	121.7	112.9	148.5	178.2
Methyl 2-furoate	144.8	117.9	111.9	146.4	159.1 (C=0),
-					51.8 (CH,)
Pyrrole	118.4	108.0			
2-Methyl pyrrole	127.2	105.9	108.1	116.7	12.4
Pyrrole-2-					
Carboxaldehyde	134.0	123.0	112.0	129.0	
Thiophene	124.4	126.2			
2-Methylthiophene	139.0	124.7	126.4	122.6	14.8
Thiophene-2-					
Carboxaldehyde	143.3	136.4	128.1	134.6	182.8
Thiazole	152.2		142.4	118.5	
Imidazole	136.2		122.3	122.3	
Pyrazole		134.3	105.2		
1–Methylpyrazole		139.2	105.7	128.7	38.1
Pyridine	150.2	123.9	135.9		
Pyrimidine	159.5		157.4	122.1 157.4	

¹³C NMR Spectroscopy

Pyrazine	145.6	
2-Methylpyrazine	154.0 141.8ª 143.8ª 144.7ª	21.6
Pyridazine	152.8 127.6	

^a Assignment not certain

4.4: Alcohols

Substitution of H in an alkane by an OH group causes down field shifts of 35-52 ppm for C-1, 5-12 ppm for C-2, and upfield shift of about 0-6 ppm for C-3. Shifts for several acyclic and alicyclic alcohols are given in Table 4.11.

Table 4.11: Chemical shifts of Alcohols (neat, ppm from TMS)

4.5 Ethers, Acetals, and Epoxides : Table 4.12 Chemical shifts of Ethers, Acetals, and Epoxides (ppm from Tms)

4.6: Halides

Table 4.13: Shift Positions for Alkyl Halides (neat, ppm fro	rom TMS)
--	----------

Compound	C-1	C-2	C-3
CH	-2.3		
CHŢF	75.4		
CH,CI	24.9		
CH ₂ Cl ₂	54.0		
CHCI,	77.5		
CCl	96.5		

CH,Br	10.0		
CH, Br,	21.4		
CHBr,	12.1		
CBr	-28.5		
СН,І	-20.7		
CH,I,	-54.0		
CHĪ,	-139.9		
CI	-292.5		
CH,CH,F	79.3	14.6	
CH,CH,CI	39.9	18.7	
CH,CH,Br	28.3	20.3	
CH,CH,I	-0.2	21.6	
CH, CH, CH, CI	46.7	26.5	11.5
CH, CH, CH, Br	35.7	26.8	13.2
CH ₃ CH ₂ CH ₂ I	10.0	27.6	16.2

4.7: Amines

An NH₂ group attached to an alkyl chain causes a downfield shift of about 30 ppm at C-1, a downfield shift of about 11 ppm at C-2, and an upfield shift of about 4.0 ppm at C-3. The NH₃⁺ group shows a somewhat smaller effect. N-alkylation increases the downfield effect of the NH₂ group at C-1. Shift positions for selected acyclic and alicyclic amines are given in Table 4.14A.

 Table 4.14A: Shift positions of Acyclic and Alicyclic Amines (neat, ppm from TMS)

Compound	C-1	C-2	C-3	C-4
CH,NH,	26.9			
CH, CH, NH,	35.9	17.7		
CH ₂ CH ₂ CH ₂ NH ₂	44.9	27.3	11.2	
CH, CH, CH, CH, NH,	42.3	36.7	20.4	14.0
(CH,),N	47.5			
CH,CH,N(CH,),	58.2	13.8		
Cyclohexylamine	504	36.7	25.7	25.1
N-Methylcyclohexylamine	58.6	33.3	25.1	26.3
				(NCH ₃ 33.5)

4.8: Thiols, Sulfides, and Disulfides

Since the electronegativity of sulfur is considerably less than that of oxygen, sulfur causes a correspondingly smaller chemical shift. Examples of thiols, sulfides, and disulfides are given in Table 4.14 B

•		· · · ·	,
Compounds	C-1	C-2	С-3
CH,SH	6.5		
CH,CH,SH	19.8	17.3	
CH,CH,CH,SH	26.4	27.6	12.6
CH, CH, CH, CH, SH	23.7	35.7	21.0
(CH,),S ²	19.3		
(CH,ĆH,),S	25.5	14.8	
(CH,CH,ĈH,),S	34.3	23.2	13.7
(CH, CH, CH, CH, ČH,), S	34.1	31.4	22.0
CH,SSCH,	22.0		
(CH,CH,SSCH,CH,	32.8	14.5	

Table 4.14B: Shift positions of Thiols, Sulfides, and Disulfides (ppm from TMS)

4.9: Functional Groups Containing Carbon

Carbon-¹³**C NMR** spectrometry permits direct observation of carbon containing functional groups. With the exception of CH=O, the presence of these groups could not be directly ascertained by ¹H NMR.

4.9.1. Ketones and Aldehyde:

Table 4.15 presents chemical shifts of the C=O group of some ketones aldehydes. Because of rather large solvent effects, there are differences of several parts per million from different literature sources.

Table 4.15: Shift positions of the C=O Group and Other carbon Atoms of Ketones and Aldehydes (ppm from TMS)

4.9.2. Carboxylic Acids, Ester, Chlorides Anhydrides, Amides and Nitriles:

The C=O groups of carboxylic acids and derivatives are in the range of 150-185 ppm. Nitriles absorb in the range of 115-125 ppm.

 Table 4.16:
 Shift Positions for the C=O group and other carbon atoms of carboxylic acids, esters, lcatones, chlorides, anhydrides, amides, carbamates, and nitriles (ppm from TMS)

а

)

a. In CHCl, (~50%)

- b. Saturated aqueous solution of CH₃ COONa
- c. Neat or saturated solution
- d. In H2O
- e. In DMSO
- f. In dioxane (~50%)

4.9.3 Oximes : The simple oximes absorb in the range of 145–165 ppm. For example

4.10: Spin Coupling

•

The ¹³C–¹³C coupling is usually not observed, except in compounds that have been deliberately enriched with ¹³C, because of the low probability of two adjacent ¹³C¹ atoms in a molecule. One bond ¹³C–H coupling (¹J_{CH}) ranges from about 110 to 320 Hz, increasing with increased s character of the ¹³C–H bond, with substitution on the carbon atom of electron withdrawing groups, and with angular distortion. Appreciable ¹³C–H coupling also extends over two or more (n) bonds (ⁿJ_{CH}). Table 4.17 gives some representative (¹J_{CH}) values. Table 4.18 gives some representative (²J_{CH}) values, which range from about –5 to 60 Hz.

Table 4.17: Some ('J _{CH}) Values	3
---	---

....

Compound	J(Hz)	
SP ³		
CH ₃ CH ₃	124.9	
CH, <u>C</u> H,CH,	119.2	
(CH,),CH	114.2	
CH, NH,	133.0	
CHJOH	141.0	
CH ₃ Cl	150.0	
CH ₂ Cl ₂	178.0	
CHCl ₃	209.0	

Table 4.18: Some (²J_{CH}) Values

 Compound	J(HZ)	
sp ³		
С <u>Н,С</u> Н,	-4.5	
C <u>H</u> , <u>C</u> Cl,	5.9	

<u>С</u> Н,С <u>Н</u> =О	26.7	
sp ²		
$\underline{C}H_2 = C\underline{H}_2$	2.4	
(C <u>H</u> ₃) ₂ <u>C</u> =O	5.5	
CH ₂ = <u>CHCH</u> =O	26.9	
C ₆ H ₆	1.0	
s p		
C <u>H</u> ≡ <u>C</u> H	49.3	
C ₆ H₅O <u>C</u> ≡C <u>H</u>	61.0	

Table 4.19: Coupling Constants for ³¹p, ¹⁹F, and D coupled to ¹³C.

Compound	¹ J(HZ)	² J(HZ)	³ J(HZ)
CH ₃ CF ₃	271		
CF ₂ H,	235		
CF,CO2H	284	43.7	
C ₆ H ₅ F	245	21.0	
(CH ₃ CH ₂) ₃ P	5.4	10.0	
$(CH_3CH_2)_4P^+Br^-$	49	4.3	
(C ₆ H ₅) ₃ P ⁺ CH ₃ I	88(CH,52)	10.9	
CH ₃ CH ₂ P(OCH ₂ CH ₃) ₂	143	7.1(j _{cop} 6.9)	Ј _{ссор} 6–2
 O			
CDCl ₃	31.5		
CD,CCD,	19.5		
$(CD_3)_2$ SO	22.0		
	25.5		

Structure	Name	δ(ppm) J	C–D(HZ)	Multiplicity
CDCl ₃	Chloroform-d,	77.0	32	Triplet
CD,OD	Methanol-d₄	49.0	21.5	Septet
CD ₃ SOCD ₃	DMSO–D ₆	39.7	21	Septet
DCN(CD ₃) ₂	DMF-d ₇	30.1	21	Septet
52	,	35.2	21	Septet
		167.7	30	Triplet
C_6D_6 D_2C-CD_2	Benzened ₆	128.0	24	Triplet
D ₂ C CD ₂	THFd	25.2	20.5	Ouintet
0	8	67.4	22	Quintet
$ \begin{array}{c} $	Dioxane-d ₈	66.5	22	Quintet
	Pyridine-d ₅	123.5 (C-3,5)	25	Triplet
		135.5 (C-4)	24.5	Triplet
D' N' D		149.2 (C-2,6)	27.5	Triplet
O II				
CD ₃ CCD ₃	Acetone-d ₆	29.8(methyl)	20	Septet
		206.5 (carbonyl) <1	Septet ^b
CD ₃ CN	Acetonitrile-d ₃	1.3(methyl)	32	Septet
		118.2(CN)	<1	Septet ^b
CD ₃ NO ₂	Nitromethan-d ₃	60.5	23.5	Septet

4.11: The ¹³C Chemical Shifts, Couplings, and Multiplicities of Common NMR Solvents

۰

..

CD ₃ CD ₂ OD	Ethanol-d ₆	15.8(C2)	19.5	Septet
		55.4(C-1)	22	Quintet
(CD ₃ CD ₂) ₂ O	Ether-d ₁₀	13.4 (C–2)	19	Septet
		64.3(C-1)	21	Quintet
[(CD ₃) ₂ N] ₃ P=O	HMPA-d ₁₈	35.8	21	Septet
CD ₃ CO ₂ D	Acetic acid-d ₄	20.0(C-2)	20	Septet
		178.4(C-1)	<1	Septet ^b
CD_2Cl_2	Dichloromethane-d ₂	53.1	29	Quintet
(Methylene chloride $-d_2$)				

^a Triplet intensities = 1:1:1, quintet = 1:2:3:2:1, septet = 1:3:6:7:6:3:1.

^b Unresolved, long. range coupling.

4.12: The ¹³C Correlation Table for Chemical Classes

R = H or alkyl substituents

Y = Polar substituents

Types and group	δ(ppm)
Acyclic hydrocarbons	
–CH ₃	8–30
 CH ₂	14–55
_Сн	24–59
-Ç	3040
Aticyclic hydrocarbons	
C ₃ H ₆	15–19
$C_4 H_8$ to $C_{10} H_{20}$	21–29
Alkenes	
$H_2C = C - R$	102–121 (H ₂ C=)
-	109–150 (=C-R)
$H_2C=C-Y$	80-170
C=C-C=C-R	109–151

Allenes	
C=C=C	70–97 (=C)
	200–214 (=C=)
Alkynes	
C≡C-R	63–73 (HC≡)
	71–89 (≡C–R)
C≡C−Y	20–94
Aromatics	
Ar–R	120-150
Ar-Y	94-158
Heteroaromatics	100–166
Alcohols C-OH	44-86
Ethers C-O-C	54-86
Acetals, Ketals O–C–O	8-12
Halides	
$C-F_{i-3}$	72-134
C-Cl ₁₋₄	20–98
C–Br _{1–4}	-28.5-+33
C-I ₁₋₄	-292.5-+42
Amines C–NR ₂	20–70
Nitro C–NO ₂	60–78
Mercaptans, Sulfides C–S–R	5.5-46
Sulfoxides, Sulfones	
C–SO–R, C–SO ₂ –R	36–54
Aldehydes, Sat. R-CHO	197–220
Aldehydes, α , β - unsat. R-C=C-CH=O	176–194
Ketones, Sat. R ₂ C=O	195-220
Ketones, α , β unsat.	
R-C=C-C=O	182-212
Carboxylic acids, sat.	
R–COOH	166186
Salts RCOO–	174–194
Carboxylic acids α , β -unsat.	

.

RC=C-COOH	159-174
Esters, sat. R-COOR ¹	158-177
Esters, α , β - unsat.	
$R-C=C-COOR^{1}$	153-172
Anhydrides (RCO) ₂ O	148174
Amides RCONH ₂	150177
Nitriles RC≡N	108–124
Oximes R ₂ C=NOH	144–166
Carbamates	
R ₂ NCOOR ¹	151–160
Isocyanates	
R-N=C=O	111–134
Cyanates R-O-C≡N	104–120
Isothiocyanates	
R-N=C=S	116–141
Thiocyanates	
R–S–C≡N	98-118

¹³C NMR data for several natural products (δ)

Uracii

Mass Spectrometry

A mass spectrum is a presentation of the masses of the positively charged fragments versus their relative concentrations.

The commonest method of presentation is either a-bar graph or a percentage table.

Mass spectra are routinely obtained at an electron beam energy of 70eV. The simplest event that occurs is the removal of a single electron from the molecule in the gas phase by an electron of the electron beam to form the molecular ion, which is a radical cation (M_{+}^{\bullet}) . The symbol $_{+}^{\bullet}$ indicates that the molecule has lost an electron, it has unpaired electron and is positively charged.

 $M \xrightarrow{70 \text{ eV}} M_{+}^{\bullet} + e^{-}$ Molecule Molecular ion

If some of the molecular (parent) ions remain intact long enough to reach the detector, we see a molecular ion peak. It is important to recognize the molecular ion peak because this gives the molecular weight of the compound. The molecular ion peak is usually the peak of highest mass number except for the isotope peaks.

The molecular ion in turn produces a series of fragment ions.

The most intense peak in the spectrum called the base peak is assigned

a value of 100%, and the intensities of the other peaks, including the molecular ion peak, are reported as percentage of the base peak. Of course, the molecular ion peak may sometimes be the base peak.

The molecular ion in turn produces a series of fragment ions as shown for benzamide:

m/	'e	7	7

Table 5.1: Exac	t Masses	of	Isotopes	
-----------------	----------	----	----------	--

Element	Atomic Weight	Nuclide	Mass
Hydrogen	1.00794	۱H	1.00783
		D(² H)	2.01410
Carbon	12.01115	¹² C	12.00000 (std)
		¹³ C	13.00336
Nitrogen	14.0067	¹⁴ N	14.0031
		¹⁵ N	15.0001
Oxygen	15.9994	¹⁶ O	15.9949
		¹⁷ O	16.9991
		¹⁸ O	17.9992
Fluorine	18.9984	¹⁹ F	18.9984

Silicon	28.0855	²⁸ Si	27.9769
		²⁹ Si	28.9765
		³⁰ Si	29.9738
Phosphorus	30.9738	³¹ p	30.9738
Sulfur	32.066	³² S	31.9721
		³³ S	32.9715
		³⁴ S	33.9679
Chlorine	35.4527	³⁵ Cl	34.9689
		³⁷ Cl	36.9659
BroTnitfe	79.9094	⁷⁹ Br	78.9183
		⁸¹ Br	80.9163
Iodine	126.9045	¹²⁷ I	126.9045

		Relative		Relative		Relative
Elements	Isotope	Abundance	Isotope	Abundance	Isotope	Abundance
Carbon	¹² C	100	¹³ C	1.11		
Hydrogen	Η ^Ι	100	² H	0.016		
Nitrogen	¹⁴ N	100	¹⁵ N	0.38		
Oxygen	¹⁶ O	100	¹⁷ O	0.04	¹⁸ O	0.20
Fluorine	¹⁹ F	100				
Silicon	²⁸ Si	100	²⁹ Si	5.10	³⁰ Si	3.35
Phosphorus	s ³¹ P	100				
Sulfur	³² S	100	³³ S	0.78	³⁴ S	4.40
Chlorine	35Cl	100			³⁷ Cl	32.5
Bromine	⁷⁹ Br	100			⁸¹ Br	98.0
Iodine	¹²⁷ I	100				

Peaks attributable to isotopes can help identify the compound responsible for a mass spectrum.

For example

$$CH_{3}CH_{2}CH_{2}CH_{2}CH_{3} \xrightarrow{70 \text{ eV}} [CH_{3}(CH_{2})_{3}CH_{3}]^{+} + e^{-}$$

Molecular ion
 $m/z = 72$

Although the molecular ion of pentane have m/z value of 72, its mass spectrum shows a very small peak at m/z = 73. This is called an M+1 peak because the ion responsible for this peak is one unit heavier than the molecular ion. The M+1 peak occurs because there are two naturally occuring isotopes of carbon : 98.89% of natural carbon ¹²C' and 1.11% is ¹³C'. The M+1 fragment results from molecular ions that contain one ¹³C' instead of a ¹²C'.

Above table shows that the M+1 peak can be used to determine the number of carbon atoms in a compound because the contributions to the M+1 peak by isotopes of H, O and the halogens are very small.

Presence of an isotopic peak at $(M^+ + 2)$ indicates the presence of four elements O, S, Br, Cl.

The presence of a large M+2 peak is evidence of a compound containing either chlorine or bromine, because each of these elements has a high percentage of a naturally occuring isotope two unit heavier than the most abundant isotope.

If the M+2 peak is one-third the height of the molecular ion peak, the compound contains a chlorine atom because the natural abundance of 37 Cl is one-third that of the 35 Cl.

If the M and M+2 peaks are of about the same height, the compound contains a bromine atom because the natural abundances of 79 Br and 81 Br are of about the same.

Recognition of the Molecular ion Peak

Many peaks can be ruled out as possible molecular ions simply on grounds of reasonable structure requirements. The nitrogen rule is often helpful. It states that a molecule of even-numbered molecular weight must contain either no nitrogen or an even number of nitrogen atoms; an odd-numbered molecular weight requires an odd number of nitrogen atoms. (for the nitrogen rule to hold, only unit atomic masses i.e., integers are used in calculating the formula masses)

This rule holds for all compounds containing carbon, hydrogen, oxygen, nitrogen, sulfur, and the halogens, as well as many of the less usual atoms such as phosphorus, boron, silicon, arsenic, and the alkaline earths.

The intensity of the molecular ion peak depends on the stability of the molecular ion. The most stable molecular ions are those of purely aromatic systems.

In general the following group of compounds will, in order of decreasing ability, give prominent molecular ion peaks: aromatic compounds > conjugated alkenes > cyclic compounds > organic sulfides > short, normal alkanes > mercaptans.

Recognisable molecular ions are usually produced for these compounds in order of decreasing ability:

ketones > amines > esters > ethers > carboxylic acids ~ aldehydes ~ amides ~ halides.

The molecular ion is frequently not detectable in aliphatic alcohols, nitrites, nitrates, nitro compounds, nitriles and in highly branched compounds.

The presence of an M-15 peak (loss of CH_3), or an M-18 peak (loss of H_2O), or an M-31 peak (loss of OCH_3 from methyl esters) and so on, is taken as confirmation of a molecular ion peak. An M-1 peak is common and occasionally and M-2 peak (loss of H_2 by either fragmentation or thermolysis) or even a rare M-3 peak (from alcohols) is reasonable. Peaks in the range of M-3 to M-14, however, indicate that contaminants may be present or that the presumed molecular ion peak is actually a fragment ion peak.

Losses of fragments of masses 19-25 are also unlikely (except for loss of F = 19 of HF = 20 from fluorinated compounds) loss of 16(O), 17(OH), or 18(H₂O) are likely only if an oxygen atom is in the molecule.

Summary of Fragmentation Processes

(1) Hydro carbons:

(a) Alkanes:

- * Straight chain alkanes show low intensity molecular ion peaks. The intensities of these peaks decrease with increasing chain length.
- * Since straight chain alkanes rarely eliminate methyl groups (-CH₃)

peaks corresponding to (M-15) are absent, or are of low intensity, in the spectra of long chain paraffins.

* Elimination of $-C_2H_5$, $-C_3H_7$, from the molecular ion gives peaks at masses C_nH_{2n+1} (m/e = 29, 43, 57, 71 and 85). These peaks are most intense in the C_2 to C_5 range. The peaks at 43 or 57 are usually the base peaks, due to the remarkable stabilities of the propyl ion $(-C_3H_7^+)$ and the butyl ion $(-C_4H_9^+)$.

The intensities of other peaks 14 mass units $(-CH_2)$ apart (71, 85, etc.) decrease with the increasing weight of the fragment. These peaks 14 units apart appear as clusters because each prominent peak is accompanied by a smaller peak one unit higher due to ¹³C and a few small peaks one and two units lower, due to the loss of hydrogen atoms.

- In branched alkanes, there is a tendency for the bonds to rupture at the branches resulting in the formation of relatively stable secondary and tertiary carbonium ions.
- * Molecular ion peaks are more abundant in cycloparaffins than in straight chain paraffins containing the same number of carbon atoms, although the cyclic compounds tend to lose their side chains.

If the ring undergoes fragmentation, it loses two carbon atoms simultaneously, thus producing an abundance of ${}^{+}C_{2}H_{4}$ (m/e 28), ${}^{+}C_{2}H_{5}$ (m/e 29), and M-28, M-29 ions in the spectrum. Due to this tendency to lose ethylene $C_{2}H_{4}$ and other even-mass number fragments, the percentage of fragments having even mass number are usually higher in the spectra of cycloparaffins than in those of acyclic hydrocarbons.

Mechanisms for fragmentations of different types of alkanes are believed to be as follows:

(i) Straight chain alkanes

$$CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}CH_{3} \xrightarrow{\text{ionisation}} CH_{3}CH_{2}^{*} + CH_{2}CH_{2}CH_{2}CH_{3}$$
alkane
(Parent ion)

 $\begin{array}{c} CH_{3}CH_{2}^{\bullet} + \stackrel{+}{C}H_{2} - CH_{2} - CH_{2} - CH_{3} \\ (radical) \\ m/e \ 29 \\ m/e \ 57 \\ \end{array} \qquad \begin{array}{c} \overbrace{\text{hemi-heterolysis}}\\ \text{followed by} \\ \text{heterolysis} \\ \end{array}$

$$\stackrel{+}{C} \stackrel{+}{H_2} - CH_2 - CH_2 - CH_3 \xrightarrow{-CH_2} CH_2 + \stackrel{+}{C} \stackrel{+}{H_2} - CH_2 - CH_2$$
(ion) m/e 57 m/e 43

(ii) Branched chain alkanes

radical CH₃ stable ion

(iii) Cycloalkanes

alkane

, + c

Parent ion

hemi-heterolysis accompanied by heterolysis of $\beta \cdot \gamma$ bond

+ C₂H₄

radical ion

(b) Alkenes

* Alkenes readily produce molecular ions by losing a π -electron.

As in alkanes, so in alkenes, the intensity of the M peak decreases with increasing molecular weight.

* The most intense peak (usually the base peak) in the spectra of olefins is due to the stable, charged species produced by allylic cleavage, that is, by the rupture of the C-C bond β to the double bond. The fragment carrying the double bond is usually the charged species.

$$H_{2}C = CH - CH_{2} - R \xrightarrow{-e} H_{2}C \xrightarrow{+} CH \xrightarrow{\alpha} CH_{2} \xrightarrow{\gamma} R$$

$$\downarrow$$

$$H_{2} \stackrel{+}{C} - CH = CH_{2} + R^{\cdot}$$

$$m/e 41$$

The natural outcome of allylic cleavage is a series of fragments at masses 41, 55, 69, 83, etc., with the general formula CnH_{2n-1} (allyl carbonium ions)

- McLafferty rearrangements are also common in these ions. These rearrangments produce ions of the general formula CnH_{2n}.
- * Cyclic alkenes usually show a distinct molecular ion peak. A unique mode of cleavage is the retro-Diels-Alder reaction shown by limonene:

(c) Aromatic hydro carbons

- An aromatic ring in a molecule stabilises the molecular ion peak, which is usually sufficiently large that accurate intensity measurements can be made on the M+1 and M+2 peaks.
- In alkyl benzenes the most probable cleavage is at the bond β to the ring. This gives rise to a base peak at m/e 91 due to the formation of tropyllium ion.

However, in compounds containing substituents on the α -carbon atom, the base peak may have masses higher than 91 by increments of 14, representing substituted tropyllium ions

m/e = 105

A strong peak at m/e = 92 is observed in the case of many compounds containing a propyl or longer side chain. This peak is due to the ${}^{+}C_{7}H_{8}$ ion produced by the McLafferty rearrangement.

Fragmentation of a tropyllium ion into a cyclopentyl cation, ${}^{+}C_{5}H_{5}$, and a cyclopropenium ion ${}^{+}C_{3}H_{3}$, results in significant peaks at m/e = 65

A characteristic cluster of ions resulting from an α cleavage and hydrogen migration in monoallcylbenzenes appears at m/e 77 (C₆H₅⁺), 78 (C₆H₆⁺) and 79 (C₆H₇⁺).

(2) Hydroxy compounds

(a) Alcohols:

* In the spectra of alcohols, the molecular ion peak M is usually either very small or totally absent. It is somewhat more abundant in the spectra of secondary than in those of primary and tertiary alcohols.

The odd-electron molecular ion is produced initially by the removal of an n-electron from oxygen:

$$R - O - H \xrightarrow{-e^{-}} R - O - H$$

The odd-electron molecular ion readily decomposes into stable products.

One such decomposition involves energetically favoured α -cleavage. This cleavage leads to more stable, even-electron, oxonium ions.

Ethanol
$$\xrightarrow{-e^-} CH_3 \xrightarrow{H} CH_3 \xrightarrow{H} O \xrightarrow{+} H \rightarrow H_2C = O \xrightarrow{+} H$$

 $H \xrightarrow{+} O \xrightarrow{-} H \rightarrow H_2C = O \xrightarrow{+} H$
 $m/e = 31$
 $(M \xrightarrow{-} CH_3) \text{ or}$
 $\dot{C}H_3 + (M \xrightarrow{-} 15)$

...

Although ethanol shows an M-1 peak at m/e = 45 by α -elimination of a hydrogen radical, the M-15 peak is more intense because α -elimination of a larger substituent is always favoured.

* In the spectra of primary alcohols, in addition to the M-1 peak, very low intensity M-2 and M-3 peaks are also observed.

$$R \xrightarrow{H} C \xrightarrow{-H^{\bullet}} R \xrightarrow{-H^{\bullet$$

 * All primary alcohols (except methanol) and high molecular-weight secondary and tertiary alcohols display peaks at M-18 due to the loss of H₂O through a cyclic mechanism.

 In cyclic alcohols, the principal dehydration process involves loss of a hydroxyl group together with a hydrogen atom from either C₃ or C₄ to produce bicyclo ions.

 Butanol & longer-chain primary alcohols often suffer double elimination. That is, they lose one molecule of water and one of ethylene simultaneously through a six-numbered cyclic mechanism, thus displaying an M-46 peak

- * The most probable site of cleavage, resulting in a very intense peak, is the bond β to the oxygen atom in alcohols. This cleavage gives a strong peak at m/e = 31 (CH₂OH)⁺ in the spectra of primary alcohols, while secondary and tertiary alcohols display analogous peaks at m/e = 45 (MeCHOH)⁺ and m/e = 59 [(CH₃)₂COH]⁺.
- Unsaturated alcohols generally behave like their saturated analogs. However, the stability of the allyl system decreases the probability of cleavage adjacent to the double bond.

$$R-CH = CH-CH + CH + OH + -H^{\bullet} R - CH = CH = OH + (M-1)$$

$$(M-1)$$

$$Very intense$$

$$(abundant)$$

$$R-CH = CH + CH + CH_2 = OH + CH_2 = OH + (less abundant)$$

(b) Phenols and other aromatic alcohols:

- * As in all aromatic compounds, the molecular-ion peak M in phenol and aromatic alcohols is strong. In phenols it forms the base peak.
- * The M-1 peak due to the loss of hydrogen is small in phenol, but is very strong in cresols and benzyl alcohols. The production of M-1 ions is due to the random abstraction of hydrogen bonded to any of the carbon atoms to produce a resonance-stabilised. π complex system such as hydroxy tropyllium ions.

 The most important fragmentation in phenols and benzyl alcohols is due to the loss of CO and CHO giving peaks corresponding to M-28 and M-29, respectively.

Spectroscopic Data Chemistry

 Methyl-substituted phenols (Cresols), other hydroxybenzenes (catechol, resorcinol, hydroquinone) and methyl-substituted benzyl alcohols display M-18 peaks due to loss of water.

The dehydration is more pronounced if the substituents are ortho to each other.

Ethers:

A molecular ion of ether is formed by the removal of one of the nonbonded electrons on oxygen, and, just as with alcohols, the molecular ions of ethers are unstable and readily undergo α -cleavage. (cleavage of a bond β to oxygen).

This type of cleavage usually accounts for the base peak and some strong peaks at 45, 59, 73 etc.

* In ethers, unlike the case of alcohols, cleavage of bonds α to oxygen can also occur.

$$R \xrightarrow{+} R' \xrightarrow{\text{heterolysis}} R \xrightarrow{+} O + \stackrel{+}{R'}$$

In such a cleavage, the alkyl portion carries the charge and accounts for hydrocarbon peaks at m/e = 29, 43, 57, 71 etc.

 Homolytic fission of bonds α to oxygen may often be accompanied by rearrangement of one hydrogen atom to eliminate an olefin.

- * Aromatic ethers display a somewhat stronger M peak, and show a fragmentation behaviour similar to that of aliphatic ethers.
- (i) Cleavage of bonds α to oxygen can be homolytic or heterolytic.

(ii) Cleavage of bond α to oxygen with rearrangement of hydrogen to eliminate an alkene.

Aldehydes and Ketones:

Organic carbonyl compounds, like other oxygen containing compounds, undergo the loss of one of the lone-pair electrons of the oxygen atom. The molecular ion thus produced can undergo fragmentation either through the more favourable α -cleavage or, if a concerted migration of γ hydrogen to oxygen is possible, through β -cleavage.

$$\begin{array}{c} R_{1} & \alpha \cdot \text{cleavage} \\ R_{1} & 0 & \text{homolytic} \\ R_{1} & \text{oxonium} \\ & \text{ion} \end{array}$$

When a γ hydrogen is available for migration, β -cleavage results in the formation of an olefin and a charged enol through the McLafferty rearrangement.

(a) Aldehydes:

- * Aliphatic as well as aromatic aldehydes display molecular-ion peaks. The M peak is prominent in aromatic aldehydes, whereas the intensity of the M peak in aliphatic aldehydes decreases rapidly in compounds containing more than four carbon atoms.
- In aldehydes, the M-1 peak is usually as intense as the M peak. The peak results from the loss of hydrogen through homolytic αcleavage.

$$R - C \stackrel{\bullet}{=} \stackrel{\bullet}{O} \longrightarrow R - C \stackrel{\bullet}{=} \stackrel{\bullet}{O} + \stackrel{\bullet}{H}$$

$$(M - 1)$$

* In lower aldehydes $(C_1 - C_3)$, α -cleavage results in the formation of the stable formyl ion $(H - C \equiv O)$, which forms the base peak.

$$R-C = \overset{\bullet}{O} \longrightarrow \begin{array}{c} H - C \equiv O + R \\ H \\ m/e = 29 \\ H \end{array}$$

However, with straight chain aldehydes of higher molecular weight, this peak is approximately 40% of the base peak which may be displayed at M-29 due to ions produced through heterolytic cleavage as:

$$\begin{array}{c} R - C = \overset{\bullet}{O} \longrightarrow \begin{array}{c} R^{+} + C \equiv \overset{\bullet}{O} \\ | & (M - 29) & | \\ H & H \end{array}$$

* The base peak in butyraldehyde and in many higher aliphatic aldehydes results from β-cleavage.

In butyraldehyde this peak is at m/e = 44, which must be a peak for a rearranged ion because it has an even mass number. In compounds containing C', H and O', peaks resulting from simple cleavage always appear at odd mass number, but the peaks due to rearranged ion have an even m/e ratio.

(b) Ketones:

- * The parent-ion peak M in ketones is of significant intensity being greater for the low-molecular weight (upto eight carbons) than for the high-molecular weight ketones.
- * α -cleavage in ketones can produce more stable R-C=O⁺ ions.

$$R_{1} = O \xrightarrow{\bullet} O \xrightarrow{homolysis} R_{1}C = O + R^{\bullet}(if R > R_{1})$$

$$R_{1} = O + R^{\bullet}(if R > R_{1})$$

$$R_{1} = O + R^{\bullet}_{1}(if R_{1} > R)$$

$$m/e = 43, 57, 71 \text{ etc.}$$

- * McLafferty rearrangements (β-cleavage with migration of γhydrogen) are common in ketones containing a chain of three or more carbon atoms attached to the carbonyl group. However, complications arise due to the following facts:
- (a) The mass of the ion produced by the migration of a single hydrogen varies with the number of carbon atoms in the alkyl group (R) which is not involved in the rearrangement.

(b) If both the alkyl groups in the ketone contain three or more carbons, double rearrangement produces the enolic cation, which can again undergo β -cleavage involving the γ -hydrogen on the second alkyl group.

If the γ -carbon in either of the alkyl groups is substituted, the order of migration of the γ -hydrogen is found to be tertiary > secondary > primary, and the rearrangement preferentially involves the larger alkyl groups.

Carboxylic acids and esters

* Aliphatic monocarboxylic acids and their esters generally display a weak but noticeable molecular-ion peak.

Aromatic monocarboxylic acids and esters, like other aromatic compounds, display a strong M peak.

 Like other oxy compounds, cleavage of the bond β to carbonyl (βcleavage), together with the rearrangement of γ-hydrogen (McLafferty rearrangement) is the most important mode of fragmentation of carboxylic acids.

In monocarboxylic acids, this fragmentation produces ions (I) which exhibit a characteristic peak at m/e = 60

A corresponding β -cleavage peak in methyl esters appears at m/e = 74 due to (II).

$$H_2C = C \underbrace{\stackrel{\bullet}{\overset{\bullet}{\overset{\bullet}{\bigcirc}}} H}_{OCH_3}$$

Analogous peaks in ethyl and butyl esters appear at 88 and 116, respectively.

In acids and esters, a similar cleavage of a bond α to carbonyl can produce four kinds of ions.

* In aromatic acids containing a methyl group ortho to the carboxyl, elimination of a stable molecule of water produces a peak at M-18. This elimination is so important that in o-toluic acid the M-18 peak is the base peak.

Mass Spectrometry

 Dibasic acids show a peak at M-90 due to the loss of both carboxyls through α-cleavage.

Amines

In amines, as in oxygen containing compounds such as alcohols, ketones, aldehydes, etc., the initial ionisation process occurs through the loss of a nonbonded electron on the hetero atom, nitrogen.

- * The molecular-ion peak M is weak to absent in high-molecular weight aliphatic open-chain amines, but strong in aromatic and cyclic amines.
- * In the case of monoamines, if the molecular-ion peak is present, it appears at an odd mass number in the spectrum. In the case of other nitrogen compounds also, it appears at odd mass number when the compound contains an odd number of nitrogen atoms (the nitrogen rule).
- * A moderate M-1 peak is observed in many aromatic and lowmolecular-weight aliphatic amines due to the loss of a hydrogen radical.

$$H \xrightarrow{H}_{H} \xrightarrow{H}_{H} \xrightarrow{H}_{H} \xrightarrow{H}_{H} \xrightarrow{H}_{H} \xrightarrow{H}_{H} \xrightarrow{H}_{2} C = \overset{+}{N} H_{2}$$

* In amines, as in alcohols, the most important fragmentation is that of the bond β to nitrogen. In many amines this fragmentation is responsible for the base peak.

* In cyclic and aromatic amines, both bonds β to nitrogen can rupture.

The loss of HCN and H_2CN from aniline is similar to the elimination of CO and CHO from phenol.

Like other side-chain aromatic compounds, alkyl anilines undergo
 β-elimination of the side chain and show a strong peak at m/e = 106 to the aminotropyllium ion

 If the α-carbon carries substituents, a complicated fragmentation, involving bonds α and β to nitrogen and a migration of β-hydrogen, can take place in secondary and tertiary amines. For example,

Amides

The mass spectroscopic behaviour of amides is generally similar to that of corresponding carboxylic acids.

- * Amides usually display an easily distinguishable molecular-ion peak which, if only one amido group is present, manifests itself at odd mass number in the spectrum.
- * In amides, as in carboxylic acids, cleavage of a carbon-carbon bond β to the carbonyl (β-cleavage) is the most important fragmentation process. In amides which have γ-hydrogen available for migration, the McLafferty rearrangement is equally common. In most primary amides, the resulting ion usually forms the base peak.

* In the case of long-chain primary amides cleavage of the bond γ to carbonyl can also take place, giving minor peaksat mass 72 (without rearrangement) and 73 (with rearrangement). * Strong peaks are also displayed at m/z = 44 by primary amides (containing upto four carbon atoms), due to rupture of the bond β to nitrogen (or α to carbonyl). This fragmentation is similar to that observed in amines.

 Table 5.3: Masses and Isotopic Abundance Ratios for Various

 Combinations of Carbon, Hydrogen, Nitrogen and Oxygen^a

	FM		FM		FM
		16		25	
12		0	15.9949	C ₂ H	25.0078
С	12.0000	H ₂ N	16.0187	26	
13		CH₄	16.0313	CN	26.0031
СН	13.0078	17		C ₂ H ₂	26.0157
14		HO	17.0027	27	
N	14.0031	H ₃ N	17.0266	CHN	27.0109
CH ₂	14.0157	18		C ₂ H ₃	27.0235
15		H ₂ O	18.0106	28	
HN	15.0109	24		N ₂	28.0062
CH3	15.0235	C ₂	24.0000	CO	27.9949

	FM		FM		FM
CH,N	28.0187	38		H,N,	44.0249
C,H,	28.0313	C,N	38.0031	co,	43.9898
29		С,Н,	38.0157	CH,NO	44.0136
HN,	29.0266	39		CH₄N,	44.0375
СНО	29.0027	C,HN	39.0109	C,H ₄ O	44.0262
CH,N	29.0140	C,H,	39.0235	C,H,N	44.0501
C,H,	29.0391	40		C,H,	44.0626
30		CN,	40.0062	45	
NO	29.9980	C,0	39.9949	HN,O	45.0089
H,N,	30.0218	C,H,N	40.0187	H,N,	45.0328
сн,о	30.0106	C ₃ H ₄	40.0313	CHO,	44.9976
CH₄N	30.0344	41		CH,NO	45.0215
C ₂ H ₆	30.0470	CHN ₂	41.0140	CH ₅ N ₂	45.0453
31		C ₂ HO	41.0027	C ₂ H ₅ O	45.0340
HNO	31.0058	C ₂ H ₃ N	41.0266	C_2H_7N	45.0579
H_3N_2	31.0297	C ₃ H ₅	41.0391	46	
CH ₃ O	31.0184	42		NO ₂	45.9929
CH ₅ N	31.0422	N ₃	42.0093	H ₂ N ₂ O	46.0167
32		CNO	41.9980	H ₄ N ₃	46.0406
0 ₂	31.9898	CH ₂ N ₂	42.0218	CH ₂ O ₂	46.0054
H ₂ NO	32.0136	C ₂ H ₂ O	42.0106	CH₄NO	46.0293
H ₄ N ₂	32.0375	C ₂ H ₄ N	42.0344	CH ₆ N ₂	46.0532
CH₄O	32.0262	C ₃ H ₆	42.0470	C ₂ H ₆ O	46.0419
33		43		47	
HO ₂	32.9976	HN_3	43.0171	HNO ₂	47.0007
H ₃ NO	33.0215	CHNO	43.0058	H ₃ N ₂ O	47.0246
34		CH ₃ N ₂	43.0297	H ₅ N ₃	47.0484
H ₂ O ₂	34.0054	C ₂ H ₃ O	43.0184	CH ₃ O ₂	47.0133
36		C ₂ H ₅ N	43.0422	CH₅NO	47.0371
C ₃	36.0000	C ₃ H ₇	43.0548	48	
37		44		Ο,	47.9847
C3H	37.0078	N ₂ O	44.0011	H_2NO_2	48.0085

÷

·	FM		FM		FM
H ₄ N ₂ O	48.0324	C,HNO	55.0058	C,H₄NO	58.0293
CH ₄ O ₂	48.0211	$C_2H_3N_2$	55.0297	$C_2H_6N_2$	58.0532
C ₄	48.0000	C,H,O	55.0184	C ₃ H ₆ O	58.0419
49		C,H,N	55.0422	C,H ₈ N	58.0657
HO ₃	48.9925	C ₄ H ₇	55.0548	C_4H_{10}	58.0783
H ₃ NO ₂	49.0164	56		59	
C ₄ H	49.0078	N₄	56.0124	HN ₃ O	59.0120
50		CN,O	56.0011	H _N	59.0359
H ₂ O ₃	50.0003	CH ₂ N ₂	56.0249	CHNO,	59.0007
C ₃ N	50.0031	C,O,	55.9898	CH ₃ N ₂ O	59.0246
C ₄ H ₂	50.0157	C,H,NO	56.0136	CH,N,	59.0484
51		C,H _A N,	56.0375	C,H,O,	59.0133
C ₃ HN	51.0109	C ₃ H ₄ O	56.0262	C,H,NO	59.0371
C ₄ H ₃	51.0235	C ₃ H ₆ N	56.0501	C,H,N,	59.0610
52	50 00/0	C₄H,	56.0626	C ₃ H ₇ O	59.0497
$C_2 N_2$	52.0062	57		C ₂ H ₀ N	59.0736
C ₃ O	51,9949	HN	57.0202	60	
C_3H_2N	52.0187	CHN O	57.0089	N ₂ O ₂	59.9960
C ₄ H ₄	52.0313	CH,N,	57.0328	H ₂ N ₂ O	60.0198
C UN	52 0140	C,HO,	56.9976	H _A N _A	60.0437
$C_2 \Pi N_2$	53.0140	C,H,NO	57.0215	CO,	59.9847
C H N	53.0027	C,H,N,	57.0453	CH,NO,	60.0085
С Н	53 0391	C,H,O	57.0340	CH ₄ N ₂ O	60.0324
54	55.0571	C,H,N	57.0579	CH ₆ N ₃	60.0563
CN.	54.0093	C₄H _o	57.0705	C,H₄O,	60.0211
C.NO	53.9980	58		C,H,NO	60.0449
C _H N,	54.0218	N ₂ O	58.0042	C,H,N,	60.0688
C.H.O	54.0106	H,N,	58.0280	C,H,O	60.0575
C,H,N	54.0344	CNO,	57.9929	C,	60.0000
C ₄ H ₆	54.0470	CH,N,O	58.0167	61	
55		CH ₄ N,	58.0406	HN,O,	61.0038
CHN ₃	55.0171	$C_2H_2O_2$	58.0054	H ₃ N ₃ O	61.0277

	FM		FM		FM
H ₅ N ₄	61.0515	C_3N_2	64.0062	C ₃ H ₄ N ₂	68.0375
CHO,	60.9925	C ₄ O	63.9949	C ₄ H ₄ O	68.0262
CH ₃ NO ₂	61.0164	C ₄ H ₂ N	64.0187	C₄H ₆ N	68.0501
CH ₅ N ₂ O	61.0402	C ₅ H ₄	64.0313	C ₅ H ₈	68.0626
CH ₇ N ₃	61.0641	65		69	
C ₂ H ₅ O ₂	61.0289	HO₄	64.9874	CHN₄	69.0202
C ₂ H ₇ NO	61.0528	H ₃ NO ₃	65.0113	C,HN,O	69.0089
C ₅ H	61.0078	C_3HN_2	65.0140	$C_2H_3N_3$	69.0328
62		C₄HO	65.0027	C ₃ HO ₂	68.9976
NO ₃	61.9878	C ₄ H ₃ N	65.0266	C ₃ H ₃ NO	69.0215
H ₂ N ₂ O ₂	62.0016	C,H,	65.0391	C,H,N,	69.0453
H ₄ N ₃ O	62.0355	66		C₄H₅O	69.0340
H ₆ N ₄	62.0594	H ₂ O ₄	65.9953	C₄H ₇ N	69.0579
CH ₂ O ₃	62.0003	C_2N_3	66.0093	C ₅ H ₉	69.0705
CH ₄ NO ₂	62.0242	C ₃ NO	65.9980	70	
CH ₆ N ₂ O	62.0480	$C_3H_2N_2$	66.0218	CN ₃ O	70.0042
C ₂ H ₆ O ₂	62.0368	C ₄ H ₂ O	66.0106	CH ₂ N ₄	70.0280
C ₄ N	62.0031	C_4H_4N	66.0344	$C_2 NO_2$	69.9929
C ₅ H ₂	62.0157	C5H6	66.0470	C ₂ H ₂ N ₂ O	70.0167
63		67		C ₂ H ₄ N ₃	70.0406
HNO3	62.9956	C ₂ HN ₃	67.0171	$C_3H_2O_2$	70.0054
H ₃ N ₂ O ₂	63.0195	C ₃ HNO	67.0058	C₃H₄NO	70.0293
H ₅ N ₃ O	63.0433	C ₃ H ₃ N ₂	67.0297	$C_3H_6N_2$	70.0532
CH ₃ O ₃	63.0082	C ₄ H ₃ O	67.0184	C4H6O	70.0419
CH ₅ NO ₂	63.0320	C ₄ H ₅ N	67.0422	C ₄ H ₈ N	70.0657
C₄HN	63.0109	C ₅ H ₇	67.0548	C ₅ H ₁₀	70.0783
C ₅ H ₃	63.0235	68		71	
64		CN ₄	68.0124	CHN ₃ O	71.0120
O ₄	63.9796	C ₂ N ₂ O	68.0011	CH ₃ N ₄	71.0359
H ₂ NO ₃	64.0034	C ₂ H ₂ N ₃	68.0249	C ₂ HNO ₂	71.0007
H ₄ N ₂ O ₂	64.0273	C ₃ O ₂	67.9598	C ₂ H ₃ N ₂ O	71.0246
CH4O3	64.0160	C ₃ H ₂ NO	68.0136	C ₂ H ₅ N ₃	71.0484

~

	FM		FM		FM
C,H,O,	71.0133	C ₃ H ₇ NO	73.0528	C,H₀N,	75.0798
C,H,NO	71.0371	C ₃ H ₉ N ₂	73.0767	C,H,O,	75.0446
C ₃ H ₇ N ₂	71.0610	C ₄ H ₉ O	73.0653	C,H,NO	75.0684
C ₄ H ₇ O	71.0497	C ₄ H ₁₁ N	73.0892	C,HN	75.0109
C₄H ₉ N	71.0736	C ₆ H	73.0078	C ₆ H ₃	75.0235
C ₅ H ₁₁	71.0861	74		76	
72		N ₃ O ₂	73.9991	N ₂ O ₃	75.9909
N₄O	72.0073	H ₂ N₄O	74.0229	$H_2N_3O_2$	76.0147
CN ₂ O ₂	71.9960	CNO ₃	73.9878	H₄N₄O	76.0386
CH ₂ N ₃ O	72.0198	CH ₂ N ₂ O ₂	74.0116	CO4	75.9796
CH ₄ N ₄	72.0437	CH₄N₃O	74.0355	CH ₂ NO ₃	76.0034
C ₂ O ₃	71.9847	CH ₆ N ₄	74.0594	CH ₄ N ₂ O ₂	76.0273
C ₂ H ₂ NO ₂	72.0085	C ₂ H ₂ O ₃	74.0003	CH ₆ N ₃ O	76.0511
C ₂ H ₄ N ₂ O	72.0324	C ₂ H ₄ NO ₂	74.0242	CH ₈ N ₄	76.0750
C ₂ H ₆ N ₃	72.0563	C ₂ H ₆ N ₂ O	74.0480	C ₂ H ₄ O ₃	76.0160
C ₃ H ₄ O ₂	72.0211	$C_2H_8N_3$	74.0719	C ₂ H ₆ NO ₂	76.0399
C ₃ H ₆ NO	72.0449	C ₃ H ₆ O ₂	74.0368	$C_2H_8N_2O$	76.0637
$C_3H_8N_2$	72.0688	C ₃ H ₈ NO	74.0606	$C_3H_8O_2$	76.0524
C ₄ H ₈ O	72.0575	$C_{3}H_{10}N_{2}$	74.0845	C_4N_2	76.0062
C ₄ H ₁₀ N	72.0814	C ₄ H ₁₀ O	74.0732	C₅O	75.9949
C ₅ H ₁₂	72.0939	C ₅ N	74.0031	C5H2N	76.0187
C ₆	72.0000	C ₆ H ₂	74.0157	C ₆ H ₄	76.0313
73		75		77	
HN₄O	73.0151	HN ₃ O ₂	75.0069	HN ₂ O ₃	76.9987
CHN ₂ O ₂	73.0038	H ₃ N ₄ O	75.0308	$H_3N_3O_2$	77.0226
CH ₃ N ₃ O	73.0277	CHNO ₃	74.9956	H ₅ N ₄ O	77.0464
CH ₅ N ₄	73.0515	CH ₃ N ₂ O ₂	75.0195	CHO₄	76.9874
C ₂ HO ₃	72.9925	CH ₅ N ₃ O	75.0433	CH ₃ NO ₃	77.0113
C ₂ H ₃ NO ₂	73.0164	CH ₇ N ₄	75.0672	CH ₅ N ₂ O ₂	77.0351
C ₂ H ₅ N ₂ O	73.0402	C ₂ H ₃ O ₃	75.0082	CH ₇ N ₃ O	77.0590
C ₂ H ₇ N ₃	73.0641	C ₂ H ₅ NO ₂	75.0320	C ₂ H ₅ O ₃	77.0238
C ₃ H ₅ O ₂	73.0289	C ₂ H ₇ N ₂ O	75.0559	$C_2H_7NO_2$	77.0477

	FM		FM	,	FM
C₄HN ₂	77.0140	$H_4N_2O_3$	80.0222	C₅H ₈ N	82.0657
C ₅ HO	77.0027	CH ₄ O ₄	80.0109	C ₆ H ₁₀	82.0783
C ₅ H ₃ N	77.0266	C ₂ N ₄	80.0124	83	
C₅H₅	77.0391	C,N,O	80.0011	C ₂ HN ₃ O	83.0120
78		C,H,N,	80.0249	C,H,N₄	83.0359
NO4	77.9827	C, O,	79.9898	C,HNO,	83.0007
$H_2N_2O_3$	78.0065	C,H,NO	80.0136	C,H,N,O	83.0246
$H_4N_3O_2$	78.0304	C ₄ H ₄ N ₅	80.0375	C ₃ H ₅ N ₃	83.0484
H ₆ N ₄ O	78.0542	C,H,O	80.0262	C ₄ H ₃ O ₂	83.0133
CH ₂ O ₄	77.9953	C,H,N	80.0501	C_H_NO	83.0371
CH ₄ NO ₃	78.0191	C,H.	80.0626	C ₄ H ₂ N ₂	83.0610
$C_2H_6O_3$	78.0317	81		C,H,O	83.0497
CH ₆ N ₂ O ₂	78.0429	H,NO,	81.0062	C,H _N N	83.0736
C_3N_3	78.0093	C,HN,	81.0202	C,H.,	83.0861
C ₄ NO	77.9980	C_HN_O	81.0089	84	
$C_4H_2N_2$	78.0218	C.H.N.	81.0328	CN ₁ O	84.0073
C ₅ H ₂ O	78.0106	C.HO.	80.9976	C_N_O_	83.9960
C₅H₄N	78.0344	C.H.NO	81.0215	C,H,N,O	84.0198
C ₆ H ₆	78.0740	C.H.N.	81.0453	C _. H _. N _.	84.0437
79 IDIO	79 0005	¢, H,O	81.0340	C,O,	83.9847
HNO ₄	70.0144	C.H.N	81.0579	C.H.NO,	84.0085
$H_3N_2O_3$	79.0144	C.H.	81.0705	C,H,N,O	84.0324
$\Gamma_5N_3O_2$	79.0362	82		C.H.N.	84.0563
	79.0031	C.N.O	82.0042	C,H,O,	84.0211
C HN	79.0209	C.H.N.	82.0280	C.H.NO	84.0449
C_{3}	79.0058	C.NO.	81.9929	C.H.N.	84.0688
C H N	79 0297	C.H.N.O	82.0167	C,H,O	84.0575
C H O	79.0184	C.H.N.	82.0406	C.H.N	84.0814
C.H.N	79.0422	C.H.O.	82.0054	C.H.,	84.0939
C.H.	79.0548	C.H.NO	82.0293	° 12 C,	84.0000
80		C.H.N.	82.0532	85	
. H₂NO₄	79.9983	C,H ₆ O ²	82.0419	CHN₄O	85.0151
4 7		2 0		-	

·	FM		FM		FM
C,HN,O,	85.0038	С,Н,	86.0157	C ₃ H ₁₀ N ₃	88.0876
C,H,N,O	85.0277	87		C ₄ H ₈ O,	88.0524
C ₂ H ₅ N ₄	85.0515	CHN ₃ O ₂	87.0069	C ₄ H ₁₀ NO	88.0763
C,HO,	84.9925	CH ₃ N₄O	87.0308	$C_4 H_{12} N_2$	88.1001
C,H,NO,	85.0164	C,HNO,	86.9956	C,H ₁ ,O	88.0888
C ₃ H ₅ N ₂ O	85.0402	C ₂ H ₃ N ₂ O ₂	87.0195	C_5N_2	88.0662
C ₃ H ₇ N ₃	85.0641	C ₂ H ₅ N ₃ O	87.0433	C ₆ O	87.9949
C ₄ H ₅ O ₂	85.0289	$C_2H_7N_4$	87.0672	C ₆ H ₂ N	88.0187
C ₄ H ₇ NO	85.0528	C ₃ H ₃ O ₃	87.0082	C_7H_4	88.0313
$C_4H_9N_2$	85.0767	C ₃ H ₅ NO ₂	87.0320	89	
C,H ₉ O	85.0653	C ₃ H ₇ N ₂ O	87.0559	HN ₄ O ₂	89.0100
C ₅ H ₁₁ N	85.0892	C ₃ H ₉ N ₃	87.0798	CHN ₂ O ₃	88.9987
C ₆ H ₁₃	85.1018	C ₄ H ₇ O ₂	87.0446	CH ₃ N ₃ O ₂	89.0226
C ₇ H	85.0078	C4H9NO	87.0684	CH₅N₄O	89.0464
86		$C_4H_{11}N_2$	87.0923	C ₂ HO ₄	88.9874
CN ₃ O ₂	85.9991	C ₅ H ₁₁ O	87.0810	C ₂ H ₃ NO ₃	89.0113
CH ₂ N ₄ O	86.0229	C ₅ H ₁₃ N	87.1049	$C_2H_5N_2O_2$	89.0351
C ₂ NO ₃	85.9878	C ₆ HN	87.0109	C ₂ H ₇ N ₃ O	89.0590
C ₂ H ₂ N ₂ O ₂	86.0116	C ₇ H ₃	87.0235	C ₂ H ₉ N ₄	89.0829
C ₂ H ₄ N ₃ O	86.0355	88		C ₃ H ₅ O ₃	89.0238
C ₂ H ₆ N ₄	86.0594	N ₄ O ₂	88.0022	C ₃ H ₇ NO ₂	89.0477
C ₃ H ₂ O ₃	86.0003	CN ₂ O ₃	87.9909	C ₃ H ₉ N ₂ O	89.0715
C ₃ H ₄ NO ₂	86.0242	CH ₂ N ₃ O ₂	88.0147	C ₃ H ₁₁ N ₃	89.0954
C ₃ H ₆ N ₂ O	86.0480	CH ₄ N ₄ O	88.0386	$C_4H_9O_2$	89.0603
C ₃ H ₈ N ₃	86.0719	C ₂ O ₄	87.9796	C ₄ H ₁₁ NO	89.0841
C ₄ H ₆ O ₂	86.0368	C ₂ H ₂ NO ₃	88.0034	C_5HN_2	89.0140
C ₄ H ₈ NO	86.0606	$C_2H_4N_2O_2$	88.0273	C₅HO	89.0027
$C_4 H_{10} N_2$	86.0845	C ₂ H ₆ N ₃ O	88.0511	C ₆ H ₃ N	89.0266
C ₅ H ₁₀ O	86.0732	C ₂ H ₈ N ₄	88.0750	C ₇ H ₅	89.0391
C ₅ H ₁₂ N	86.0970	C ₃ H ₄ O ₃	88.0160	90	
C ₆ H ₁₄	86.1096	C ₃ H ₆ NO ₂	88.0399	N ₃ O ₃	89.9940
C ₆ N	86.0031	C ₃ H ₈ N ₂ O	88.0637	$H_2N_4O_2$	90.0178

	FM		FM		FM
CNO.	89.9827	C.HN.	91.0171	CH _s N ₂ O ₃	93.0300
CH_N_O	90.0065	C_HNO	91.0058	CH,N,O,	93.0539
CH_N_O	90.0304	C,H,N,	91.0297	C,H,O,	93.0187
CH,N,O	90.0542	C,H,O	91.0184	$C_2H_7NO_3$	93.0426
C.H.O.	89.9953	C,H,N	91.0422	C ₃ HN ₄	93.0202
C.H.NO.	90.0191	C.H.	91.0548	C ₄ HN ₂ O	93.0089
C.H.N.O.	90.0429	92		C ₄ H ₃ N ₃	93.0328
C.H.N.O	90.0668	N.O.	91.9858	C ₅ HO ₂	92.9976
C.H.N.	90.0907	H_N,O,	92.0096	C5H3NO	93.0215
C.H.O.	90.0317	H,N,O,	92.0335	C ₅ H ₅ N ₂	93.0453
C.H.NO.	90.0555	CH.NO.	91.9983	C ₆ H ₅ O	93.0340
C.H. N.O	90.0794	CH.N.O.	92.0222	C ₆ H ₇ N	93.0579
C.H.,O.	90.0681	4 2 3 CH.N.O.	92.0460	C ₇ H ₉	93.0705
C.N.	90.0093	CH_N_O	92.0699	94	
C,NO	89.9980	C,H,O,	92.0109	$H_2N_2O_4$	94.0014
C.H.N.	90.0218	C,H,NO,	92.0348	$H_4N_3O_3$	94.0253
C,H,O	90.0106	C,H,N,O,	92.0586	$H_6N_4O_2$	94.0491
C.H.N	90.0344	C,H.O,	92.0473	CH_4NO_4	94.0140
C_H	90.0470	C,N,	92.0124	$CH_6N_2O_3$	94.0379
91		C,N,O	92.0011	$C_2 H_6 O_4$	94.0200
HN.O.	91.0018	C ₁ H ₂ N ₂	92.0249		94.0042
H,N,O,	91.0257	⁴ ² ³ ³ ³	91.9898	$C_3 \Pi_2 \Pi_4$	94.0280
CHNO,	90.9905	C,H,NO	92.0136	$CHNO_2$	94 0167
CH ₂ N ₂ O ₃	91.0144	C,H ₄ N,	92.0375	$C_{4}H_{2}H_{2}$	94.0406
CH _s N _s O ₂	91.0382	C ₆ H ₄ O	92.0262	C.H.O.	94.0054
CH_N_O	91.0621	C _c H _c N	92.0501	C.H.NO	94.0293
C,H,O,	91.0031	Ċ,H	92.0626	C,H,N,	94.0532
C,H,NO,	91.0269	93		C _c H _c O	94.0419
C,H,N,O,	01.0508	HN,O,	92.9936	C _c H _e N	94.0657
C,H,N,O	91.0746	H,N,O,	93.0175	$C_7 H_{10}$	94.0783
C,H,O,	91.0395	H,N₄O,	93.0413	95	
C,H,NO,	91.0634	CH ₃ NO ₄	93.0062	$H_3N_2O_4$	95.0093

	FM		FM		FM
H ₅ N ₃ O ₃	95.0331	C ₃ HN ₂ O ₂	97.0038	C_8H_2	98.0157
CH₅NO₄	95.0218	C ₃ H ₃ N ₃ O	97.0277	99	
C ₃ HN ₃ O	95.0120	C ₃ H ₅ N ₄	97.0515	C ₂ HN ₃ O ₂	99.0069
C ₃ H ₃ N ₄	95.0359	C ₄ HO ₃	96.9925	C ₂ H ₃ N ₄ O	99.0308
C₄HNO ₂	95.0007	C ₄ H ₃ NO ₂	97.0164	C ₃ HNO ₃	98.9956
$C_4H_3N_2O$	95.0246	C4H5N2O	97.0402	C ₃ H ₃ N ₂ O ₂	99.0195
$C_4H_5N_3$	95.0484	$C_4H_7N_3$	97.0641	C ₃ H ₅ N ₃ O	99.0433
C,H,O,	95.0133	C,H,O,	97.0289	C ₃ H ₇ N ₄	99.0672
C,H,NO	95.0371	C,H,NO	97.0528	C ₄ H ₃ O ₃	99.0082
C,H,N,	95.0610	C,H ₉ N,	97.0767	$C_4H_5NO_2$	99.0320
C ₆ H ₇ O	95.0497	C ₆ H ₉ O	97.0653	C ₄ H ₇ N ₂ O	99.0559
C ₆ H ₉ N	95.0736	C ₆ H ₁₁ N	97.0892	C ₄ H ₉ N ₃	99.0798
C,H,	95.0861	C ₇ H ₁₃	97.1018	C,H,O,	99.0446
96		C ₈ H	97.0078	C,H,NO	99.0684
H₄N,O₄	96.0171	98		C,H ₁₁ N,	99.0923
C ₂ N ₄ O	96.0073	$C_2N_3O_2$	97.9991	C ₆ H ₁₁ O	99.0810
C ₃ N,O,	95.9960	C,H,N₄O	98.0229	C ₆ H ₁₃ N	99.1049
C,H,N,O	96.0198	C,NO,	97.9878	C ₇ H ₁₅	99.1174
C ₃ H ₄ N ₄	96.0437	C,H,N,O,	98 .0116	C ₇ HN	99.0109
C ₄ O ₃	95.9847	C ₃ H ₄ N ₃ O	98.0355	C ₈ H ₃	99.0235
C ₄ H ₂ NO ₂	96.0085	C ₃ H ₆ N ₄	98.0594	100	
C ₄ H ₄ N ₂ O	96.0324	C ₄ H ₂ O ₃	98.0003	CN4O2	100.0022
$C_4H_6N_3$	96.0563	$C_4H_4NO_2$	98.0242	$C_2N_2O_3$	99.9909
C ₅ H ₄ O ₂	96.0211	C ₄ H ₆ N ₂ O	98.0480	C ₂ H ₂ N ₃ O ₂	100.0147
C ₅ H ₆ NO	96.0449	$C_4H_8N_3$	98.0719	C ₂ H ₄ N ₄ O	100.0386
C ₅ H ₈ N ₂	96.0688	C ₅ H ₆ O ₂	98.0368	C ₃ O ₄	99.9796
C ₆ H ₈ O	96.0575	C,H,NO	98.0606	C ₃ H ₂ NO ₃	100.0034
C ₆ H ₁₀ N	96.0814	C ₅ H ₁₀ N,	98.0845	$C_3H_4N_2O_2$	100.0273
C ₇ H ₁ ,	96.0939	C ₆ H ₁₀ O	98.0732	C ₃ H ₆ N ₃ O	100.0511
C ₈	96.0000	$C_6H_{12}N$	98.0970	C ₃ H ₈ N ₄	100.0750
97		C ₇ H ₁₄	98.1096	C ₄ H ₄ O ₃	100.0160
C ₂ HN ₄ O	97.0151	C ₇ N	98.0031	C ₄ H ₆ NO ₂	100.0399
- •		•			

	FM		FM		FM
$C_4H_8N_0$	100.0637	C,HO	101.0027	C,HNO4	102.9905
$C_4H_{10}N_3$	100.0876	C ₇ H ₃ N	101.0266	C,H,N,O,	103.0144
$C_{1}H_{8}O_{2}$	100.0524	C ₈ H ₅	101.0391	C,H,N,O,	103.0382
C ₅ H ₁₀ NO	100.0763	102		C ₂ H ₇ N ₄ O	103.0621
$C_{5}H_{12}N_{2}$	100.1001	CN ₃ O ₃	101.9940	C ₃ H ₃ O ₄	103.0031
C ₆ H ₁₂ O	100.0888	CH ₂ N ₄ O ₂	102.0178	C ₃ H ₅ NO ₃	103.0269
C ₆ H ₁₄ N	100.1127	C ₂ NO ₄	101.9827	$C_3H_7N_2O_2$	103.0508
C_6N_2	100.0062	$C_2H_2N_2O_3$	102.0065	C ₃ H ₉ N ₃ O	103.0746
$C_{7}H_{16}$	100.1253	$C_2H_4N_3O_2$	102.0304	C ₃ H ₁₁ N ₄	103.0985
C ₇ O	99.9949	C ₂ H ₆ N ₄ O	102.0542	C ₄ H ₇ O ₃	103.0395
C ₇ H ₂ N	100.0187	C ₃ H ₂ O ₄	101.9953	C ₄ H ₉ NO ₂	103.0634
C ₈ H ₄	100.0313	C ₃ H ₄ NO ₃	102.0191	C ₄ H ₁₁ N ₂ O	103.0872
101		C ₃ H ₆ N ₂ O ₂	102.0429	$C_4H_{13}N_3$	103.1111
CHN ₄ O ₂	101.0100	C ₃ H ₈ N ₃ O	102.0668	$C_5H_{11}O_2$	103.0759
$C_2HN_2O_3$	100.9987	$C_{3}H_{10}N_{4}$	102.0907	C ₅ H ₁₃ NO	103.0998
C ₂ H ₃ N ₃ O ₂	101.0226	C ₄ H ₆ O ₃	102.0317	C ₅ HN ₃	103.0171
C ₂ H ₅ N ₄ O	101.0464	$C_4H_8NO_2$	102.0555	C ₆ HNO	103.0058
C ₃ HO ₄	100.9874	$C_4H_{10}N_2O$	102.0794	$C_6H_3N_2$	103.0297
C ₃ H ₃ NO ₃	101.0113	$C_4H_{12}N_3$	102.1032	C ₇ H ₃ O	103.0184
C ₃ H ₅ N ₂ O ₂	101.0351	$C_{5}H_{10}O_{2}$	102.0681	C ₇ H ₅ N	103.0422
C ₃ H ₇ N ₃ O	101.0590	C ₅ H ₁₂ NO	102.0919	C ₈ H ₇	103.0548
C ₃ H ₉ N ₄	101.0829	$C_5H_{14}N_2$	102.1158	104	
C ₄ H ₅ O ₃	101.0238	C ₅ N ₃	102.0093	CN ₂ O ₄	103.9858
C ₄ H ₇ NO ₂	101.0477	C ₆ H ₁₄ O	102.1045	CH ₂ N ₃ O ₃	104.0096
C ₄ H ₉ N ₂ O	101.0715	C ₆ NO	101.9980	CH ₄ N ₄ O ₂	104.0335
C ₄ H ₁₁ N ₃	101.0954	C ₆ H ₂ N ₂	102.0218	C ₂ H ₂ NO ₄	103.9983
C ₅ H ₉ O ₂	101.0603	C ₇ H ₂ O	102.0106	C ₂ H ₄ N ₂ O ₃	104.0222
C₅H ₁₁ NO	101.0841	C ₇ H ₄ N	102.0344	C ₂ H ₆ N ₃ O ₂	104.0460
C ₅ H ₁₃ N ₂	101.1080	C ₈ H ₆	102.0470	C ₂ H ₈ N ₄ O	104.0699
C ₆ H ₁₃ O	101.0967	103		C ₃ H ₄ O ₄	104.0109
C ₆ H ₁₅ N	101.1205	CHN ₃ O ₃	103.0018	C ₃ H ₆ NO ₃	104.0348
C ₆ HN ₂	101.0140	CH ₃ N ₄ O ₂	103.0257	C ₃ H ₈ N ₂ O ₂	104.0586

	FM		FM		FM
C,H ₁₀ N,O	104.0825	C ₆ HO,	104.9976	CH ₇ N₄O,	107.0570
C ₃ H ₁ ,N ₄	104.1063	C ₆ H ₃ NO	105.0215	C,H,NO,	107.0218
C ₄ H ₈ O ₃	104.0473	C ₆ H ₅ N,	105.0453	C,H,N,O,	107.0457
$C_4H_{10}NO_2$	104.0712	C,H,O	105.0340	C,H ₀ N ₃ O,	107.0695
C ₄ H ₁ ,N,O	104.0950	C,H,N	105.0579	C ₃ H ₇ O ₄	107.0344
$C_A N_A$	104.0124	C ₈ H ₉	105.0705	C,H,NO,	107.0583
C,H,,O,	104.0837	106		C ₄ HN ₃ O	107.0120
C,N,O	104.0011	CH,N,O₄	106.0014	C ₄ H ₃ N ₄	107.0359
C ₅ H ₂ N ₃	104.0249	CH ₄ N ₃ O ₃	106.0253	C ₅ HNO ₂	107.0007
$C_6 O_2$	103.9898	CH ₆ N ₄ O ₂	106.0491	C ₅ H ₃ N ₂ O	107.0246
C ₆ H ₂ NO	104.0136	C ₂ H ₄ NO ₄	106.0140	$C_5H_5N_3$	107.0484
$C_6H_4N_2$	104.0375	C ₂ H ₆ N ₂ O ₃	106.0379	C ₆ H ₃ O ₂	107.0133
C ₇ H ₄ O	104.0262	$C_2H_8N_3O_2$	106.0617	C ₆ H ₅ NO	107.0371
C ₇ H ₆ N	104.0501	$C_{2}H_{10}N_{4}O$	106.0856	$C_6H_7N_2$	107.0610
C ₈ H ₈	104.0626	C ₃ H ₆ O ₄	106.0266	C ₇ H ₇ O	107.0497
105		C ₃ H ₈ NO ₃	106.0504	C ₇ H ₉ N	107.0736
CHN ₂ O ₄	104.9936	$C_{3}H_{10}N_{2}O_{2}$	106.0743	C ₈ H ₁₁	107.0861
CH ₃ N ₃ O ₃	105.0175	$C_4H_{10}O_3$	106.0630	108	
CH ₅ N ₄ O ₂	105.0413	C ₄ N ₃ O	106.0042	CH ₄ N ₂ O ₄	108.0171
C ₂ H ₃ NO ₄	105.0062	C ₄ H ₂ N ₄	106.0280	CH ₆ N ₃ O ₃	108.0410
C ₂ H ₅ N ₂ O ₃	105.0300	C ₅ NO ₂	105.9929	CH ₈ N ₄ O ₂	108.0648
C ₂ H ₇ N ₃ O ₂	105.0539	C ₅ H ₂ N ₂ O	106.0167	C ₂ H ₆ NO ₄	108.0297
C ₂ H ₉ N ₄ O	105.0777	C ₅ H ₄ N ₃	106.0406	$C_2H_8N_2O_3$	108.0535
C ₃ H ₅ O ₄	105.0187	$C_6H_2O_2$	106.0054	C ₃ H ₈ O ₄	108.0422
C ₃ H ₇ NO ₃	105.0426	C ₆ H ₄ NO	106.0293	C ₃ N ₄ O	108.0073
C ₃ H ₉ N ₂ O ₂	105.0664	C ₆ H ₆ N ₂	106.0532	$C_4N_2O_2$	107.9960
C ₃ H ₁₁ N ₃ O	105.0903	C ₇ H ₆ O	106.0419	$C_4H_2N_3O$	108.0198
C ₄ H ₉ O ₃	105.0552	C ₇ H ₈ N	106.0657	$C_4H_4N_4$	108.0437
$C_4H_{11}NO_2$	105.0790	$C_{8}H_{10}$	106.0783	C ₅ O ₃	107.9847
C ₄ HN ₄	105.0202	107		C ₅ H ₂ NO ₂	108.0085
C ₅ HN ₂ O	105.0089	CH ₃ N ₂ O ₄	107.0093	C ₅ H ₄ N ₂ O	108.0324
C ₅ H ₃ N ₃	105.0328	CH ₅ N ₃ O ₃	107.0331	C ₅ H ₆ N ₃	108.0563

					······································
	FM		FM		FM
$C_6H_4O_2$	108.0211	C ₄ H ₄ N ₃ O	110.0355	C ₉ H ₃	111.0235
C ₆ H ₆ NO	108.0449	C ₄ H ₆ N ₄	110.0594	112	
$C_6H_8N_2$	108.0688	C ₅ H ₂ O ₃	110.0003	C ₂ N ₄ O ₂	112.0022
C ₇ H ₈ O	108.0575	$C_5H_4NO_2$	110.0242	C ₃ N ₂ O ₃	111.9909
C ₇ H ₁₀ N	108.0814	C ₅ H ₆ N ₂ O	110.0480	C ₃ H ₂ N ₃ O ₂	112.0147
C ₈ H ₁₂	108.0939	$C_5H_8N_3$	110.0719	C ₃ H ₄ N ₄ O	112.0386
C ₉	108.0000	$C_6H_6O_2$	110.0368	C_4O_4	111.9796
109		C ₆ H ₈ NO	110.0606	C ₄ H ₂ NO ₃	112.0034
CH ₅ N ₂ O ₄	109.0249	$C_{6}H_{10}N_{2}$	110.0845	$C_4H_4N_2O_2$	112.0273
CH ₈ N ₃ O ₃	109.0488	C ₇ H ₁₀ O	110.0732	C ₄ H ₆ N ₃ O	112.0511
C ₂ H ₇ NO ₄	109.0375	$C_7 H_{12} N$	110.0970	C ₄ H ₈ N ₄	112.0750
C ₃ HN₄O	109.0151	C ₈ H ₁₄	110.1096	C ₅ H ₄ O ₃	112.0160
$C_4HN_2O_2$	109.0038	C ₈ N	110.0031	C5H6NO2	112.0399
C ₄ H ₃ N ₃ O	109.0277	C ₉ H ₂	110.0157	C ₅ H ₈ N ₂ O	112.0637
C ₄ H ₅ N ₄	109.0515	111		$C_{5}H_{10}N_{3}$	112.0876
C ₅ HO ₃	108.9925	C ₃ HN ₃ O ₂	111.0069	C ₆ H ₈ O ₂	112.0524
C ₅ H ₃ NO ₂	109,0164	C ₃ H ₃ N ₄ O	111.0308	C ₆ H ₁₀ NO	112.0763
C ₅ H ₅ N ₂ O	109.0402	C ₄ HNO ₃	110.9956	$C_{6}H_{12}N_{2}$	112.1001
C ₅ H ₇ N ₃	109.0641	C ₄ H ₃ N ₂ O ₂	111.0195	C ₇ H ₁₂ O	112.0888
C ₆ H ₅ O ₂	109.0289	C4H5N3O	111.0433	C ₇ H ₁₄ N	112.1127
C ₆ H ₇ NO	109.0528	C ₄ H ₇ N ₄	111.0672	C ₇ N ₂	112.0062
C ₆ H ₉ N ₂	109.0767	C ₅ H ₃ O ₃	111.0082	C ₈ H ₁₆	112.1253
C ₇ H ₉ O	109.0653	C ₅ H ₅ NO ₂	111.0320	C ₈ O	111.9949
C ₇ H ₁₁ N	109.0892	C ₅ H ₇ N ₂ O	111.0559	C_8H_2N	112.0187
C ₈ H ₁₃	109.1018	C ₅ H ₉ N ₃	111.0798	C ₉ H ₄	112.0313
C ₉ H	109.0078	$C_6H_7O_2$	111.0446	113	
110		C ₆ H ₉ NO	111.0684	$C_2HN_4O_2$	113.0100
CH ₆ N ₂ O ₄	110.0328	$C_{6}H_{11}N_{2}$	111.0923	$C_3HN_2O_3$	112.9987
C ₃ N ₃ O ₂	109.9991	C ₇ H ₁₁ O	111.0810	C ₃ H ₃ N ₃ O ₂	113.0226
C ₃ H ₂ N ₄ O	110.0229	C ₇ H ₁₃ N	111.1049	$C_{3}H_{5}N_{4}O$	113.0464
C ₄ NO ₃	109.9878	C ₈ H ₁₅	111.1174	C ₄ HO ₄	112.9874
C ₄ H ₂ N ₂ O ₂	110.0116	C ₈ HN	111.0109	C ₄ H ₃ NO ₃	113.0113

<u></u>	FM		FM		FM
$C_4H_5N_2O_2$	113.0351	C ₅ H ₁₂ N ₃	114.1032	$C_6 HN_3$	115.0171
C ₄ H ₇ N ₃ O	113.0590	$C_{6}H_{10}O_{7}$	114.0681	C ₇ H ₁₅ O	115.1123
C ₄ H ₉ N ₄	113.0829	C ₆ H ₁₂ NO	114.0919	C ₇ H ₁₇ N	115.1362
C,H,O,	113.0238	$C_{6}H_{14}N_{7}$	114.1158	C ₇ HNO	115.0058
C,H,NO,	113.0477	C_6N_3	114.0093	$C_7H_3N_2$	115.0297
C,H,N,O	113.0715	C ₇ H ₁₄ O	114.1045	C ₈ H ₃ O	115.0184
C ₅ H ₁₁ N ₃	113.0954	C ₇ H ₁₆ N	114.1284	C ₈ H ₅ N	115.0422
C ₆ H ₉ O ₂	113.0603	C ₇ NO	113.9980	C ₉ H ₇	115.0548
C ₆ H ₁₁ NO	113.0841	$C_7H_2N_2$	114.0218	116	
$C_{6}H_{13}N_{2}$	113.1080	C ₈ H ₁₈	114.1409	C ₂ N ₂ O ₄	115.9858
C ₇ H ₁₃ O	113.0967	C ₈ H ₂ O	114.0106	$C_2H_2N_3O_3$	116.0096
C ₇ H ₁₅ N	113.1205	C ₈ H ₄ N	114.0344	C ₂ H ₄ N ₄ O ₂	116.0335
C ₇ HN ₂	113.0140	C ₉ H ₆	114.0470	C ₃ H ₂ NO ₄	115.9983
C ₈ H ₁₇	113.1331	115		C ₃ H ₄ N ₂ O ₃	116.0222
C ₈ HO	113.0027	C ₂ HN ₃ O ₃	115.0018	C ₃ H ₆ N ₃ O ₂	116.0460
C ₈ H ₃ N	113.0266	C ₂ H ₃ N ₄ O ₂	115.0257	C ₃ H ₈ N ₄ O	116.0699
C ₉ H ₅	113.0391	C ₃ HNO ₄	114.9905	C ₄ H ₄ O ₄	116.0109
114		C ₃ H ₃ N ₂ O ₃	115.0144	C4H6NO3	116.0348
$C_2N_3O_3$	113.9940	C ₃ H ₅ N ₃ O ₂	115.0382	C ₄ H ₈ N ₂ O ₂	116.0586
$C_2H_2N_4O_2$	114.0178	C ₃ H ₇ N ₄ O	115.0621	C ₄ H ₁₀ N ₃ O	116.0825
C ₃ NO ₄	113.9827	C ₄ H ₃ O ₄	115.0031	$C_{4}H_{12}N_{4}$	116.1063
$C_3H_2N_2O_3$	114.0065	C ₄ H ₅ NO ₃	115.0269	C ₅ H ₈ O ₃	116.0473
$C_3H_4N_3O_2$	114.0304	C ₄ H ₇ N ₂ O ₂	115.0508	C ₅ H ₁₀ NO ₂	116.0712
C ₃ H ₆ N ₄ O	114.0542	C4H9N3O	115.0746	$C_{5}H_{12}N_{2}O$	116.0950
C ₄ H ₂ O ₄	113.9953	$C_4H_{11}N_4$	115.0985	$C_5H_{14}N_3$	116.1189
C ₄ H ₄ NO ₃	114.0191	C ₅ H ₇ O ₃	115.0395	C ₅ N ₄	116.0124
$C_4H_6N_2O_2$	114.0429	C ₅ H ₉ NO ₂	115.0634	C ₆ H ₁₂ O ₂	116.0837
C ₄ H ₈ N ₃ O	114.0668	C ₅ H ₁₁ N ₂ O	115.0872	C ₆ H ₁₄ NO	116.1076
$C_4H_{10}N_4$	114.0907	C ₅ H ₁₃ N ₃	115.1111	$C_{6}H_{16}N_{2}$	116.1315
C ₅ H ₆ O ₃	114.0317	C ₆ H ₁₁ O ₂	115.0759	C ₆ N ₂ O	116.0011
C ₅ H ₈ NO ₂	114.0555	C ₆ H ₁₃ NO	115.0998	C ₆ H ₂ N ₃	116.0249
C ₅ H ₁₀ N ₂ O	114.0794	$C_{6}H_{15}N_{2}$	115.1236	C ₇ H ₁₆ O	116.1202

<u> </u>	FM		FM		FM
C,0,	115.9898	C ₈ H ₇ N	117.0579	C,H,N,O,	119.0331
C,H,NO	116.0136	C ₄ H ₉	117.0705	$C_2H_7N_4O_2$	119.0570
$C_7 H_4 N_2$	116.0375	118		C ₃ H ₅ NO ₄	119.0218
C,H,O	116.0262	C,H,N,O₄	118.0014	C,H,N,O,	119.0457
C ₈ H ₆ N	116.0501	C,H ₄ N,O,	118.0253	$C_3H_9N_3O_2$	119.0695
C ₀ H ₈	116.0626	$C, H_6 N_4 O,$	118.0491	C ₃ H ₁₁ N ₄ O	119.0934
117		C,H ₄ NO ₄	118.0140	C ₄ H ₇ O ₄	119.0344
C,HN,O	116.9936	C, H ₆ N, O,	118.0379	C ₄ H ₉ NO ₃	119.0583
C,H,N,O,	117.0175	$C_3H_8N_3O_2$	118.0617	$C_4H_{11}N_2O_2$	119.0821
C,H,N₄O,	117.0413	C ₃ H ₁₀ N ₄ O	118.0856	C ₄ H ₁₃ N ₃ O	119.1060
C ₃ H ₃ NO ₄	117.0062	C ₄ H ₆ O ₄	118.0266	C ₅ H ₁₁ O ₃	119.0708
$C_3H_5N_2O_3$	117.0300	C ₄ H ₈ NO ₃	118.0504	C ₅ H ₁₃ NO ₂	119.0947
$C_3H_7N_3O_2$	117.0539	$C_4H_{10}N_2O_2$	118.0743	C5HN3O	119.0120
C ₃ H ₉ N ₄ O	117.0777	$C_4H_{12}N_3O$	118.0981	C5H3N4	119.0359
C ₄ H ₅ O ₄	117.0187	$C_4H_{14}N_4$	118.1220	C ₆ HNO ₂	119.0007
C ₄ H ₇ NO ₃	117.0426	C ₅ H ₁₀ O ₃	118.0630	C ₆ H ₃ N ₂ O	119.0246
C ₄ H ₉ N ₂ O ₂	117.0664	C ₅ H ₁₂ NO ₂	118.0868	C ₆ H ₅ N ₃	119.0484
C ₄ H ₁₁ N ₃ O	117.0903	$C_5H_{14}N_2O$	118.1107	C ₇ H ₃ O ₂	119.0133
C ₄ H ₁₃ N ₄	117.1142	C ₅ N ₃ O	118.0042	C7H5NO	119.0371
C ₅ H ₉ O ₃	117.0552	C ₅ H ₂ N ₄	118.0280	C ₇ H ₇ N ₂	119.0610
C ₅ H ₁₁ NO ₂	117.0790	$C_{6}H_{14}O_{2}$	118.0994	C ₈ H ₇ O	119.0497
C ₅ H ₁₃ N ₂ O	117.1029	$C_6 NO_2$	117.9929	C ₈ H ₉ N	119.0736
C ₅ H ₁₅ N ₃	117.1267	$C_6H_2N_2O$	118.0167	C ₉ H ₁₁	119.0861
C5HN4	117.0202	C ₆ H ₄ N ₃	118.0406	120	
$C_{6}H_{13}O_{2}$	117.0916	C ₇ H ₂ O ₂	118.0054	$C_2H_4N_2O_4$	120.0171
C ₆ H ₁₅ NO	117.1154	C ₇ H ₄ NO	118.0293	$C_2H_6N_3O_3$	120.0410
C ₆ HN ₂ O	117.0089	C ₇ H ₆ N ₂	118.0532	$C_2H_8N_4O_2$	120.0648
C ₆ H ₃ N ₃	117.0328	C ₈ H ₆ O	118.0419	C ₃ H ₆ NO ₄	120.0297
C ₇ HO ₂	116.9976	C_8H_8N	118.0657	$C_3H_8N_2O_3$	120.0535
C ₇ H ₃ NO	117.0215	C ₉ H ₁₀	118.0783	$C_{3}H_{10}N_{3}O_{2}$	120.0774
C ₇ H ₅ N ₂	117.0453	119		$C_3H_{12}N_4O$	120.1012
C ₈ H ₅ O	117.0340	C ₂ H ₃ N ₂ O ₄	119.0093	$C_4H_8O_4$	120.0422

	FM		FM		FM
$C_4H_{10}NO_3$	120.0661	C ₆ H ₃ NO ₂	121.0164	C ₉ H ₁₄	122.1096
$C_4H_{12}N_2O_2$	120.0899	C ₆ H ₅ N ₂ O	121.0402	C ₉ N	122.0031
C ₄ N ₄ O	120.0073	C ₆ H ₇ N ₃	121.0641	C ₁₀ H,	122.0157
C,H ₁ ,O,	120.0786	C,H,O,	121.0289	123	
C,N,O,	119.9960	C,H,NO	121.0528	C,H,N,O4	123.0406
C,H,N,O	120.0198	C ₇ H ₉ N,	121.0767	C,H,N,O,	123.0644
C ₅ H ₄ N ₄	120.0437	C ₈ H ₉ O	121.0653	C ₃ H ₉ NO ₄	123.0532
C ₆ O ₃	119.9847	C ₈ H ₁₁ N	121.0892	C₄HN ₃ O ₂	123.0069
C ₆ H ₂ NO ₂	120.0085	C ₉ H ₁₃	121.1018	C ₄ H ₃ N ₄ O	123.0308
C ₆ H ₄ N ₂ O	120.0324	C ₁₀ H	121.0078	C ₅ HNO ₃	122.9956
C ₆ H ₆ N ₃	120.0563	122		C ₅ H ₃ N ₂ O ₂	123.0195
C ₇ H ₄ O ₂	120.0211	C ₂ H ₆ N ₂ O ₄	122.0328	C ₅ H ₅ N ₃ O	123.0433
C7H6NO	120.0449	C ₂ H ₈ N ₃ O ₃	122.0566	C ₅ H ₇ N ₄	123.0672
C ₇ H ₈ N ₂	120.0688	$C_{2}H_{10}N_{4}O_{2}$	122.0805	C ₆ H ₃ O ₃	123.0082
C ₈ H ₈ O	120.0575	C ₃ H ₈ NO ₄	122.0453	C ₆ H ₅ NO ₂	123.0320
C ₈ H ₁₀ N	120.0814	C ₃ H ₁₀ N ₂ O ₃	122.0692	C ₆ H ₇ N ₂ O	123.0559
C ₉ H ₁₂	120.0939	$C_{4}H_{10}O_{4}$	122.0579	C ₆ H ₉ N ₃	123.0798
C ₁₀	120.0000	$C_4N_3O_2$	121.9991	$C_7 H_7 O_2$	123.0446
121 :		$C_4H_2N_4O$	122.0229	C7H9NO	123.0684
C ₂ H ₅ N ₂ O ₄	121.0249	C ₅ NO ₃	121.9878	$C_{7}H_{11}N_{2}$	123.0923
C ₂ H ₇ N ₃ O ₃	121.0488	$C_5H_2N_2O_2$	122.0116	C ₈ H ₁₁ O	123.0810
C ₂ H ₉ N ₄ O ₂	121.0726	C ₅ H ₄ N ₃ O	122.0355	$C_8H_{13}N$	123.1049
C ₃ H ₇ NO ₄	121.0375	C ₅ H ₆ N ₄	122.0594	C ₉ H ₁₅	123.1174
C ₃ H ₉ N ₂ O ₃	121.0614	C ₆ H ₂ O ₃	122.0003	C₀HN	123.0109
$C_3H_{11}N_3O_2$	121.0852	$C_6H_4NO_2$	122.0242	C ₁₀ H ₃	123.0235
C ₄ H ₉ O ₄	121.0501	$C_6H_6N_2O$	122.0480	124	
$C_4H_{11}NO_3$	121.0739	C ₆ H ₈ N ₃	122.0719	$C_2H_8N_2O_4$	124.0484
C₄HN₄O	121.0151	C ₇ H ₆ O ₂	122.0368	$C_3N_4O_2$	124.0022
C ₅ HN ₂ O ₂	121.0038	C7H8NO	122.0606	$C_4N_2O_3$	123.9909
C ₅ H ₃ N ₃ O	121.0277	$C_{7}H_{10}N_{2}$	122.0845	$C_4H_2N_3O_2$	124.0147
C ₅ H ₅ N ₄	121.0515	$C_8H_{10}O$	122.0732	$C_4H_4N_4O$	124.0386
C ₆ HO ₃	120.9925	$C_8H_{12}N$	122.0970	C ₅ O ₄	123.9796

	FM		FM		FM
C,H,NO,	124.0034	C,H,O,	125.0603	C ₈ NO	125.9980
C,H₄N,O,	124.0273	C ₇ H ₁₁ NO	125.0841	$C_{8}H_{2}N_{2}$	126.0218
C ₅ H ₆ N ₃ O	124.0511	$C_7 H_{13} N_2$	125.1080	$C_{9}H_{18}$	126.1409
C ₅ H ₈ N ₄	124.0750	C ₈ H ₁₃ O	125.0967	C ₉ H ₂ O	126.0106
C ₆ H ₄ O ₃	124.0160	C ₈ H ₁₅ N	125.1205	C ₉ H₄N	126.0344
C ₆ H ₆ NO ₂	124.0399	C ₈ HN,	125.0140	$C_{10}H_6$	126.0470
$C_6H_8N_2O$	124.0637	C ₉ H ₁₇	125.1331	127	
$C_{6}H_{10}N_{3}$	124.0876	C ₉ HO	125.0027	C ₃ HN ₃ O ₃	127.0018
C ₇ H ₈ O ₂	124.0524	C ₉ H ₃ N	125.0266	$C_3H_3N_4O_2$	127.0257
C ₇ H ₁₀ NO	124.0763	C ₁₀ H ₅	125.0391	C ₄ HNO ₄	126.9905
$C_7 H_{12} N_2$	124.1001	126		C ₄ H ₃ N ₂ O ₃	127.0144
C ₈ H ₁₂ O	124.0888	C ₃ N ₃ O ₃	125.9940	C ₄ H ₅ N ₃ O ₂	127.0382
$C_8H_{14}N$	124.1127	$C_3H_2N_4O_2$	126.0178	C ₄ H ₇ N ₄ O	127.0621
C ₈ N ₂	124.0062	C ₄ NO ₄	125.9827	C ₅ H ₃ O ₄	127.0031
C ₉ H ₁₆	124.1253	C ₄ H ₂ N ₂ O ₃	126.0065	C ₅ H ₅ NO ₃	127.0269
C°O	123.9949	$C_4H_4N_3O_2$	126.0304	C ₅ H ₇ N ₂ O ₂	127.0508
C ₉ H ₂ N	124.0187	C ₄ H ₆ N ₄ O	126.0542	C5H9N3O	127.0746
C ₁₀ H ₄	124.0313	C ₅ H ₂ O ₄	125.9953	C ₅ H ₁₁ N ₄	127.0985
125		C ₅ H ₄ NO ₃	· 126.0191	C ₆ H ₇ O ₃	127.0395
C ₃ HN ₄ O ₂	125.0100	$C_5H_6N_2O_2$	126.0429	C ₆ H ₉ NO ₂	127.0634
C ₄ HN ₂ O ₃	124.9987	C ₅ H ₈ N ₃ O	126.0668	C ₆ H ₁₁ N ₂ O	127.0872
$C_4H_3N_3O_2$	125.0226	$C_{5}H_{10}N_{4}$	126.0907	$C_{6}H_{13}N_{3}$	127.1111
C ₄ H ₅ N ₄ O	125.0464	$C_6H_6O_3$	126.0317	C ₇ H ₁₁ O ₂	127.0759
C5HO4	124.9874	C ₆ H ₈ NO ₂	126.0555	C ₇ H ₁₃ NO	127.0998
C ₅ H ₃ NO ₃	125.0113	$C_{6}H_{10}N_{2}O$	126.0794	$C_{7}H_{15}N_{2}$	127.1236
C ₅ H ₅ N ₂ O ₂	125.0351	$C_{6}H_{12}N_{3}$	126.1032	C ₇ HN ₃	127.0171
C ₅ H ₇ N ₃ O	125.0590	C ₇ H ₁₀ O ₂	126.0681	C ₈ H ₁₅ O	127.1123
C ₅ H ₉ N ₄	125.0829	C ₇ H ₁₂ NO	126.0919	C ₈ H ₁₇ N	127.1362
C ₆ H ₅ O ₃	125.0238	$C_{7}H_{14}N_{2}$	126.1158	C ₈ HNO	127.0058
C ₆ H ₇ NO ₂	125.0477	C ₇ N ₃	126.0093	C ₈ H ₃ N ₂	127.0297
C ₆ H ₉ N ₂ O	125.0715	C ₈ H ₁₄ O	126.1045	C ₉ H ₃ O	127.0184
$C_{6}H_{11}N_{3}$	125.0954	$C_8H_{16}N$	126.1284	C ₉ H ₅ N	127.0422

	FM		FM		FM
C ₉ H ₁₉	127.1488	C ₉ H ₆ N	128.0501	C ₁₀ H ₉	129.0705
$C_{10}H_{7}$	127.0548	C ₁₀ H ₉	128.0626	130	
128		129		C,H,N,O,	130.0014
C ₃ N ₂ O ₄	127.9858	C ₃ HN ₂ O ₄	128.9936	C ₃ H ₄ N ₃ O ₃	130.0253
C ₃ H ₂ N ₃ O ₃	128.0096	C ₃ H ₃ N ₃ O ₃	129.0175	$C_3H_6N_4O_2$	130.0491
$C_3H_4N_4O_2$	128.0335	$C_3H_5N_4O_2$	129.0413	C ₄ H ₄ NO ₄	130.0140
C₄H,NO₄	127.9983	C ₄ H ₃ NO ₄	129.0062	$C_4H_6N_2O_3$	130.0379
C ₄ H ₄ N ₂ O ₃	128.0222	C ₄ H ₅ N ₂ O ₃	129.0300	C4H8N,0,	130.0617
$C_4H_6N_3O_7$	128.0460	C ₄ H ₇ N ₃ O ₂	129.0539	C ₄ H ₁₀ N ₄ O	130.0856
C ₄ H ₈ N ₄ O	128.0699	C ₄ H ₉ N ₄ O	129.0777	C ₅ H ₆ O ₄	130.0266
C ₅ H ₄ O ₄	128.0109	C ₅ H ₅ O ₄	129.0187	C ₅ H ₈ NO ₃	130.0504
C ₅ H ₆ NO ₃	128.0348	C ₅ H ₇ NO ₃	129.0426	$C_{5}H_{10}N_{2}O_{2}$	130.0743
$C_5H_8N_2O_2$	128.0586	C ₅ H ₉ N ₂ O ₂	129.0664	C ₅ H ₁₂ N ₃ O	130.0981
C ₅ H ₁₀ N ₃ O	128.0825	C ₅ H ₁₁ N ₃ O	129.0903	$C_{5}H_{14}N_{4}$	130.1220
$C_{5}H_{12}N_{4}$	128.1063	C ₅ H ₁₃ N ₄	129.1142	$C_{6}H_{10}O_{3}$	130.0603
C ₆ H ₈ O ₃	128.0473	C ₆ H ₉ O ₃	129.0552	C ₆ H ₁₂ NO ₂	130.0868
$C_6H_{10}NO_2$	128.0712	$C_6H_{11}NO_2$	129.0790	$C_6H_{14}N_2O$	130.1107
$C_{6}H_{12}N_{2}O$	128.0950	$C_{6}H_{13}N_{2}O$	129.1029	$C_{6}H_{16}N_{3}$	130.1346
$C_6H_{14}N_3$	128.1189	$C_{6}H_{15}N_{3}$	129.1267	C ₆ N ₃ O	130.0042
C ₆ N ₄	128.0124	C ₆ HN ₄	129.0202	C ₆ H ₂ N ₄	130.0280
$C_{7}H_{12}O_{2}$	128.0837	$C_{7}H_{13}O_{2}$	129.0916	$C_{7}H_{14}O_{2}$	130.0994
C7H14NO	128.1076	C7H15NO	129.1154	C7H16NO	130.1233
$C_{7}H_{16}N_{2}$	128.1315	$C_{7}H_{17}N_{2}$	129.1393	C ₇ NO ₂	129.9929
C ₇ N ₂ O	128.0011	C ₇ HN ₂ O	129.0089	$C_{7}H_{18}N_{2}$	130.1471
$C_7H_2N_3$	128.0249	$C_7H_3N_3$	129.0328	C ₇ H ₂ N ₂ O	130.0167
C ₈ H ₁₆ O	128.1202	C ₈ H ₁₇ O	129.1280	$C_7H_4N_3$	130.0406
C_8O_2	127.9898	C ₈ HO ₂	128.9976	C ₈ H ₁₈ O	130.1358
C ₈ H ₁₈ N	128.1440	C ₈ H ₁₉ N	129.1519	$C_8H_2O_2$	130.0054
C ₈ H,NO	128.0136	C ₈ H ₃ NO	129.0215	C ₈ H ₄ NO	130.0293
$C_8H_4N_2$	128.0375	C ₈ H ₅ N ₂	129.0453	$C_8H_6N_2$	130.0532
C ₉ H ₂₀	128.1566	C,H,O	129.0340	C ₉ H ₆ O	130.0419
C₀H₄O	128.0262	C _o H ₋ N	129.0579	C _o H _o N	130.0657

,

	FM		FM		FM
$C_{10}H_{10}$	130.0783	$C_3H_6N_3O_3$	132.0410	$C_3H_7N_3O_3$	133.0488
131		$C_3H_8N_4O_2$	132.0648	$C_3H_9N_4O_2$	133.0726
C ₃ H ₃ N ₂ O ₄	131.0093	C ₄ H ₆ NO ₄	132.0297	C ₄ H ₇ NO ₄	133.0375
$C_3H_5N_3O_3$	131.0331	$C_4H_8N_2O_3$	132.0535	C ₄ H ₉ N ₂ O ₃	133.0614
C ₃ H ₇ N ₄ O ₂	131.0570	$C_4H_{10}N_3O_2$	132.0774	$C_4H_{11}N_3O_2$	133.0852
C ₄ H ₅ NO ₄	131.0218	C ₄ H ₁ ,N ₄ O	132.1012	C ₄ H ₁₃ N ₄ O	133.1091
$C_4H_7N_2O_3$	131.0457	C ₅ H ₈ O ₄	132.0422	C ₅ H ₉ O ₄	133.0501
C ₄ H ₉ N ₃ O ₂	131.0695	C,H ₁₀ NO ₃	132.0661	C,H,NO,	133.0739
C ₄ H ₁₁ N ₄ O	131.0934	C,H,N,O,	132.0899	C,H,,N,O,	133.0978
C ₅ H ₇ O ₄	131.0344	C,H _M N ₂ O	132.1138	C,H,N,O	133.1216
C ₅ H ₉ NO ₃	131.0583	C _t H ₁ _c N ₄	132.1377	C,HN,O	133.0151
$C_{5}H_{11}N_{2}O_{2}$	131.0821		132.0073	C,H,,O,	133.0865
C ₅ H ₁₃ N ₃ O	131.1060	C,H,,O,	132.0786	C ₂ H ₁ NO ₂	133.1103
C ₅ H ₁₅ N ₄	131.1298	° 12' 3 C.H.,NO,	132.1025	C,HN,O,	133.0038
$C_6H_{11}O_3$	131.0708	6 14 2 C.H.,N.O	132.1264	° 2 2 C,H,N,O	133.0277
C ₆ H ₁₃ NO ₂	131.0947	C.N.O.	131,9960	C.H.N.	133.0515
C ₆ H ₁₅ N ₂ O	131.1185	C.H.N.O	132.0198	C ₋ HO ₋	132,9925
C ₆ H ₁₇ N ₃	131.1424	C.H.N.	132.0437	C.H.NO.	133.0164
C ₆ HN ₃ O	131.0120	C_HO.	132.1151	C.H.N.O	133.0402
C ₆ H ₃ N ₄	131.0359	$C_{-}O_{-}$	131.9847	C_H_N.	133.0641
$C_7H_{15}O_2$	131.1072	C ₁ H ₂ NO.	132.0085	C.H.O.	133.0289
$C_7 H_{17} NO$	131.1311	C.H.N.O	132.0324	C.H.NO	133.0528
$C_7 HNO_2$	121.0007	C.H.N.	132.0563	C.H.N.	133.0767
$C_7 H_3 N_2 O$	121.0494	C-H.O.	132.0211	C.H.O	133.0653
	121.0122	C H NO	132.0449	C.H.N	133.0892
$C_8 \overline{C}_2$	131.0133	C H N	132.0688	С. Н	133 1018
	131.0571	CHO	132.0000	С. Н	133 0078
$C_8 \Pi_7 \Pi_2$	131.0010	C H N	132.0814	134	155.0070
С H N	131.0736	С ₉ П ₁₀ П	132.0014	CHNO	134 0328
	131.0861	C_{10}^{11}	132.0757	C H N O	134 0566
132	151.0001	U ₁₁ 133	152.0000	C H N O	134.0300
CHNO	132.0171	СНИО	133 0249	C H NO	134 0453
~3· ·4· `2~4	102.0171	~3 ¹¹ 5 ¹¹ 2 ⁰ 4	133.0447	~4 ¹ 8 ¹ 8 ⁴	10400

	FM		FM		FM
$C_{4}H_{10}N,O,$	134.0692	C ₅ H ₁₁ O ₄	135.0657	C ₆ H,NO,	136.0034
C ₄ H ₁₂ N ₅ O ₂	134.0930	C ₅ H ₁₃ NO ₃	135.0896	C ₆ H ₂ N ₂ O ₂	136.0273
C ₄ H ₁₄ N ₄ O	134.1169	C ₅ HN ₃ O ₂	135.0069	C ₆ H ₆ N ₃ O	136.0511
$C_{5}H_{10}O_{4}$	134.0579	C ₅ H ₃ N ₄ O	135.0308	$C_6H_8N_4$	136.0750
$C_5H_{12}NO_3$	134.0817	C ₆ HNO ₃	134.9956	C ₇ H ₄ O ₃	136.0160
$C_{5}H_{14}N_{2}O_{2}$	134.1056	$C_6H_3N_2O_2$	135.0195	C ₇ H ₈ NO ₂	136.0399
$C_5N_3O_2$	133.9991	C ₆ H ₅ N ₃ O	135.0433	C ₇ H ₈ N ₂ O	136.0637
C,H,N₄O	134.0229	$C_6H_7N_4$	135.0672	$C_7 H_{10} N_3$	136.0876
$C_6H_{14}O_3$	134.0943	C ₇ H ₃ O ₃	135.0082	C ₈ H ₈ O ₂	136.0524
C ₆ NO ₃	133.9878	C ₇ H ₅ NO ₂	135.0320	C ₈ H ₁₀ NO	136.0763
C ₆ H ₂ N ₂ O ₂	134.0116	C ₇ H ₇ N ₂ O	135.0559	$C_{8}H_{12}N_{2}$	136.1001
C ₆ H ₄ N ₃ O	134.0355	$C_7H_9N_3$	135.0798	C ₉ H ₁₂ O	136.0888
C ₆ H ₆ N ₄	134.0594	$C_8H_7O_2$	135.0446	$C_9H_{14}N$	136.1127
C ₇ H ₂ O ₃	134.0003	C ₈ H ₉ NO	135.0684	C_9N_2	136.0062
$C_7 H_4 NO_2$	134.0242	$C_{8}H_{11}N_{2}$	135.0923	C ₁₀ H ₁₆	136.1253
C,H,N,O	134.0480	C ₉ H ₁₁ O	135.0810	C ₁₀ O	135.9949
$C_7H_8N_3$	134.0719	C ₉ H ₁₃ N	135.1049	$C_{10}H_2N$	136.0187
$C_8H_6O_2$	134.0368	C ₁₀ H ₁₅	135.1174	$C_{11}H_4$	136.0313
C ₈ H ₈ NO	134.0606	C ₁₀ HN	135.0109	137	
$C_{8}H_{10}N_{2}$	134.0845	C ₁₁ H ₃	135.0235	C ₃ H ₉ N ₂ O ₄	137.0563
C ₉ H ₁₀ O	134.0732	136		C ₃ H ₁₁ N ₃ O ₃	137.0881
$C_9H_{12}N$	134.0970	C ₃ H ₈ N ₂ O ₄	136.0484	C ₄ H ₁₁ NO ₄	137.0688
$C_{10}H_{14}$	134.1096	$C_{3}H_{10}N_{3}O_{3}$	136.0723	$C_4HN_4O_2$	137.0100
C ₁₀ N	134.0031	$C_{3}H_{12}N_{4}O_{2}$	136.0961	C ₅ HN ₂ O ₃	136.9987
$C_{11}H_2$	134.0157	$C_4H_{10}NO_4$	136.0610	C ₅ H ₃ N ₃ O ₂	137.0226
135		$C_4H_{12}N_2O_3$	136.0848	C ₅ H ₅ N ₄ O	137.0464
C ₃ H ₇ N ₂ O ₄	135.0406	$C_4N_4O_2$	136.0022	C ₆ HO ₄	136.9874
$C_3H_9N_3O_3$	135.0644	$C_{5}H_{12}O_{4}$	136.0735	C ₆ H ₃ NO ₃	137.0113
$C_3H_1N_4O_2$	135.0883	$C_5N_2O_3$	135.9909	C ₆ H ₅ N ₂ O ₂	137.0351
C ₄ H ₉ NO ₄	135.0532	$C_5H_2N_3O_2$	136.0147	C ₆ H ₇ N ₃ O	137.0590
$C_4 H_{11} N_2 O_3$	135.0770	C ₅ H ₄ N ₄ O	136.0386	C ₆ H ₉ N ₄	137.0829
$C_4H_{13}N_3O_2$	135.1009	C_6O_4	135.9796	C ₇ H ₅ O ₃	137.0238

,

<u> </u>	FM		FM		FM
C,H,NO,	137.0477	· C _e H ₁₄ N ₂	138.1158	C₀HNO	139.0058
C,H,N,O	137.0715	C ₈ N ₃	138.0093	C _o H ₃ N,	139.0297
C,H, N,	137.0954	C _o H _i dO	138.1045	C ₁₀ H ₁₉	139.1488
C,H,O,	137.0603	C ₉ H ₁₆ N	138.1284	C ₁₀ H ₃ O	139.0184
C,H,NO	137.0841	C _o NO	137.9980	C ₁₀ H ₅ N	139.0422
C,H,N,	137.1080	C ₉ H ₂ N ₂	138.0218	$C_{11}H_7$	139.0548
C ₀ H ₁₃ O	137.0967	C ₁₀ H ₁₈	138.1409	140	
C ₉ H ₁₅ N	137.1205	$C_{10}H_2O$	138.0106	C ₄ N ₂ O ₄	139.9858
C _o HN,	137.0140	$C_{10}H_4N$	138.0344	$C_4H_2N_3O_3$	140.0096
C10H17	137.1331	C ₁₁ H ₆	138.0470	$C_4H_4N_4O_2$	140.0335
C ₁₀ HO	137.0027	139		C ₅ H ₂ NO ₄	139.9983
$C_{10}H_3N$	137.0266	C ₄ HN ₃ O ₃	139.0018	C ₅ H ₄ N ₂ O ₃	140.0222
C ₁₁ H,	137.0391	$C_4H_3N_4O_2$	139.0257	C ₅ H ₆ N ₃ O ₂	140.0460
138		C ₅ HNO ₄	138.9905	C ₅ H ₈ N ₄ O	140.0699
$C_{3}H_{10}N_{2}O_{4}$	138.0641	C ₅ H ₃ N ₂ O ₃	139.0144	C ₆ H ₄ O ₄	140.0109
$C_4N_3O_3$	137.9940	C ₅ H ₅ N ₃ O ₂	139.0382	C ₆ H ₆ NO ₃	140.0348
$C_4H_2N_4O_2$	138.0178	C ₅ H ₇ N ₄ O	139.0621	C ₆ H ₈ N ₂ O ₂	140.0586
C ₅ NO ₄	137.9827	C ₆ H ₃ O ₄	139.0031	C ₆ H ₁₀ N ₃ O	140.0825
C ₅ H ₂ N ₂ O ₃	138.0065	C ₆ H ₅ NO ₃	139.0269	$C_{6}H_{12}N_{4}$	140.1063
C ₅ H ₄ N ₃ O ₂	138.0304	C ₆ H ₇ N ₂ O ₂	139.0508	C ₇ H ₈ O ₃	140.0473
C ₅ H ₆ N ₄ O	138.0542	C ₆ H ₉ N ₃ O	139.0746	C ₇ H ₁₀ NO ₂	140.0712
C ₆ H ₂ O ₄	137.9953	$C_{6}H_{11}N_{4}$	139.0985	$C_7 H_{12} N_2 O$	140.0950
C ₆ H ₄ NO ₃	138.0191	C ₇ H ₇ O ₃	139.0395	$C_{7}H_{14}N_{3}$	140.1189
C ₆ H ₆ N ₂ O ₂	138.0429	C ₇ H ₉ NO ₂	139.0634	C ₇ N ₄	140.0124
C ₆ H ₈ N ₃ O	138.0668	C ₇ H ₁₁ N ₂ O	139.0872	$C_8H_{12}O_2$	140.0837
$C_{6}H_{10}N_{4}$	138.0907	$C_{7}H_{13}N_{3}$	139.1111	C ₈ H ₁₄ NO	140.1076
C ₇ H ₆ O ₃	138.0317	$C_{8}H_{11}O_{2}$	139.0759	$C_{8}H_{16}N_{2}$	140.1315
C ₇ H ₈ NO ₂	138.0555	C ₈ H ₁₃ NO	139.0998	C ₈ N ₂ O	140.0011
C ₇ H ₁₀ N ₂ O	138.0794	$C_{8}H_{15}N_{2}$	139.1236	$C_8H_2N_3$	140.0249
$C_{7}H_{12}N_{3}$	138.1032	C ₈ HN ₃	139.0171	C ₉ H ₁₆ O	140.1202
C ₈ H ₁₀ O ₂	138.0681	C ₉ H ₁₅ O	139.1123	C ₉ O ₂	139.9898
C ₈ H ₁₂ NO	138.0919	$C_{9}H_{17}N$	139.1362	C ₉ H ₁₈ N	140.1440

	FM		FM		FM
C.H.NO	140.0136	C.H.NO	141.0215	C.H.O.	142.0054
C _. H _. N _.	140.0375	C _a H _a N _a	141.0453	C ₀ H ₀ N	142.1597
C ₁₀ H ₂₀	140.1566	C.,H.,	141.1644	C ₀ H ₂ NO	142.0293
C, H,O	140.0262	C ₁₀ H ₂ O	141.0340	C ₀ H ₂ N ₂	142.0532
$C_{10}H_{c}N$	140.0501	$C_{10}H_{2}N$	141.0579	C ₁₀ H ₂₂	142.1722
C,H.	140.0626	C.H.	141.0705	$C_{10}H_{c}O$	142.0419
141		142		C.H.N	142.0657
C,HN,O,	140.9936	C,H,N,O,	142.0014	C, H,	142.0783
⁴ 2 ⁴ C ₄ H ₃ N ₃ O ₃	141.0175	$C_4H_4N_2O_3$	142.0253	143	
C ₄ H ₄ N ₄ O ₅	141.0413	$C_{A}H_{c}N_{A}O_{2}$	142.0491	C ₄ H ₃ N ₂ O ₄	143.0093
C,H,NO	141.0062	C ₅ H ₄ NO ₄	142.0140	C ₄ H ₅ N ₅ O ₅	143.0331
C,H,N,O,	141.0300	$C_{H_{c}}H_{N_{c}}O_{3}$	142.0379	C ₄ H ₂ N ₄ O ₂	143.0570
C,H,N,O,	141.0539	C,H,N,O,	142.0617	C,H,NO	143.0218
C,H ₉ N₄O	141.0777	C ₄ H ₁₀ N ₄ O	142.0856	C,H,N,O,	143.0457
C ₆ H ₂ O ₄	141.0187	C ₆ H ₆ O ₄	142.0266	C,H,N,O,	143.0695
C ₆ H ₇ NO ₃	141.0426	C ₆ H ₈ NO ₃	142.0504	C ₅ H ₁₁ N ₄ O	143.0934
C ₆ H ₉ N ₂ O ₂	141.0664	C ₆ H ₁₀ N,O,	142.0743	C ₆ H ₇ O ₄	143.0344
C ₆ H ₁₁ N ₃ O	141.0903	$C_{6}H_{12}N_{3}O$	142.0981	C ₆ H ₉ NO ₃	143.0583
$C_{6}H_{13}N_{4}$	141.1142	$C_6H_{14}N_4$	142.1220	$C_{6}H_{11}N_{2}O_{2}$	143.0821
C ₇ H ₉ O ₃	141.0552	$C_{7}H_{10}O_{3}$	142.0630	C ₆ H ₁₃ N ₃ O	143.1060
$C_7 H_{11} NO_2$	141.0790	C ₇ H ₁₂ NO ₂	142.0868	$C_{6}H_{15}N_{4}$	143.1298
C ₇ H ₁₃ N ₂ O	141.1029	$C_7 H_{14} N_2 O$	142.1107	C ₇ H ₁₁ O ₃	143.0708
C ₇ H ₁₅ N ₃	141.1267	$C_{7}H_{16}N_{3}$	142.1346	C ₇ H ₁₃ NO ₂	143.0947
C ₇ HN ₄	141.0202	C ₇ N ₃ O	142.0042	C ₇ H ₁₅ N ₂ O	143.1185
$C_{7}H_{13}O_{2}$	141.0916	C ₇ H ₂ N ₄	142.0280	C ₇ H ₁₇ N ₃	143.1424
C ₈ H ₁₅ NO	141.1154	$C_8H_{14}O_2$	142.0994	C ₇ HN ₃ O	143.0120
$C_8 H_{17} N_2$	141.1393	C ₈ H ₁₆ NO	142.1233	C ₇ H ₃ N ₄	143.0359
C ₈ HN ₂ O	141.0089	C_8NO_2	141.9929	$C_{8}H_{15}O_{2}$	143.1072
C ₈ H ₃ N ₃	141.0328	$C_{8}H_{18}N_{2}$	142.1471	C ₈ H ₁₇ NO	143.1311
C ₉ H ₁₇ O	141.1280	C ₈ H ₂ N ₂ O	142.0167	C ₈ HNO ₂	143.0007
C ₉ HO ₂	140.9976	$C_8H_4N_3$	142.0406	$C_{8}H_{19}N_{2}$	143.1549
C ₉ H ₁₉ N	141.1519	C ₉ H ₁₈ O	142.1358	C ₈ H ₃ N ₂ O	143.0246

×

	FM		FM		FM
C ₂ H ₅ N ₃	143.0484	C ₈ H ₁₈ NO	144.1389	C ₇ H ₃ N ₃ O	145.0277
C ₀ H ₁₀ O	143.1436	C ₈ H,NO,	144.0085	C ₇ H ₅ N ₄	145.0515
C H,O,	143.0133	C, H ₂₀ N,	144.1628	C ₈ H ₁₇ O,	145.1229
$C_0H_{2}N$	143.1675	C ₈ H ₄ N ₂ O	144.0324	C,HO,	144.9925
C ₀ H ₂ NO	143.0371	C ₈ H ₆ N ₃	144.0563	C ₈ H ₁₉ NO	145.1467
C ₀ H ₇ N,	143.0610	C ₉ H ₂₀ O	144.1515	C ₈ H ₃ NO ₂	145.0164
C ₁₀ H ₇ O	143.0497	C ₉ H ₄ O ₂	144.0211	C ₈ H ₅ N ₂ O	145.0402
C ₁₀ H ₀ N	143.0736	C ₀ H ₆ NO	144.0449	$C_8H_7N_3$	145.0641
C,H,	143.0861	CH ₈ N,	144.0688	C ₉ H ₅ O ₂	145.0289
144		C ₁₀ H ₈ O	144.0575	C ₉ H ₇ NO	145.0528
C ₄ H ₄ N ₂ O ₄	144.0171	$C_{10}H_{10}N$	144.0814	C ₉ H ₉ N ₂	145.0767
$C_4H_6N_3O_3$	144.0410	$C_{11}H_{12}$	144.0939	C ₁₀ H ₉ O	145.0653
$C_4H_8N_4O_2$	144.0648	C ₁₂	144.0000	C ₁₀ H ₁₁ N	145.0892
C,H,NO,	144.0297	145		C ₁₁ H ₁₃	145.1018
$C_5H_8N_2O_3$	144.0535	C ₄ H ₅ N ₂ O ₄	145.0249	C ₁₂ H	145.0078
$C_{5}H_{10}N_{3}O_{2}$	144.0774	C ₄ H ₇ N ₃ O ₃	145.0488	146	
C ₅ H ₁₂ N ₄ O	144.1012	C ₄ H ₉ N ₄ O ₂	145.0726	C ₄ H ₆ N ₂ O ₄	146.0328
C ₆ H ₈ O ₄	144.0422	C ₅ H ₇ NO ₄	145.0375	C ₄ H ₈ N ₃ O ₃	146.0566
C ₆ H ₁₀ NO ₃	144.0661	C ₅ H ₉ N ₂ O ₃	145.0614	$C_4H_{10}N_4O_2$	146.0805
$C_6H_{12}N_2O_2$	144.0899	C ₅ H ₁₁ N ₃ O ₂	145.0852	C ₅ H ₈ NO ₄	146.0453
C ₆ H ₁₄ N ₃ O	144.1138	C ₅ H ₁₃ N ₄ O	145.1091	C ₅ H ₁₀ N ₂ O ₃	146.0692
C ₆ H ₁₆ N ₄	144.1377	C ₆ H ₉ O ₄	145.0501	C ₅ H ₁₂ N ₃ O ₂	146.0930
C ₆ N ₄ O	144.0073	C ₆ H ₁₁ NO ₃	145.0739	C ₅ H ₁₄ N ₄ O	146.1169
$C_{7}H_{12}O_{3}$	144.0786	$C_{6}H_{13}N_{2}O_{2}$	145.0978	C ₆ H ₁₀ O ₄	146.0579
C ₇ H ₁₄ NO ₂	144.1025	$C_6H_{15}N_3O$	145.1216	C ₆ H ₁₂ NO ₃	146.0817
C ₇ H ₁₆ N ₂ O	144.1264	C ₆ H ₁₇ N ₄	145.1455	$C_{6}H_{14}N_{2}O_{2}$	146.1056
$C_7 N_2 O_2$	143.9960	C ₆ HN₄O	145.0151	C ₆ H ₁₆ N ₃ O	146.1295
$C_{7}H_{18}N_{3}$	144.1502	C ₇ H ₁₃ O ₃	145.0865	$C_6N_3O_2$	145.9991
C ₇ H ₂ N ₃ O	144.0198	C ₇ H ₁₅ NO ₂	145.1103	$C_{6}H_{18}N_{4}$	146.1533
C ₇ H ₄ N ₄	144.0437	C ₇ H ₁₇ N ₂ O	145.1342	C ₆ H ₂ N ₄ O	146.0229
$C_8H_{16}O_2$	144.1151	C ₇ HN ₂ O ₂	145.0038	C ₇ H ₁₄ O ₃	146.0943
C_8O_3	143.9847	$C_{7}H_{19}N_{3}$	145.1580	C ₇ H ₁₆ NO ₂	146.1182

.

	FM		FM		FM
C,NO3	145.9878	C ₇ H ₁₅ O ₃	147.1021	C ₆ H ₄ N ₄ O	148.0386
C ₇ H ₁₈ N,O	146.1420	C ₇ H ₁₇ NO,	147.1260	$C_{7}H_{16}O_{3}$	148.1100
C,H,N,O,	146.0116	C ₇ HNO ₃	146.9956	C ₇ O ₄	147.9796
C ₇ H₄N ₃ O	146.0355	C,H,N,O,	147.0195	C ₇ H ₂ NO ₃	148.0034
C ₇ H ₆ N ₄	146.0594	C,H,N,O	147.0433	C,H,N,O,	148.0273
$C_{8}H_{18}O_{2}$	146.1307	$C_7H_7N_4$	147.0672	C ₇ H ₆ N ₃ O	148.0511
C ₈ H ₂ O ₃	146.0003	C ₈ H ₃ O ₃	147.0082	$C_7H_8N_4$	148.0750
$C_{8}H_{4}NO_{2}$	146.0242	C ₈ H ₅ NO,	147.0320	C ₈ H ₄ O ₃	148.0160
C ₈ H ₈ N ₂ O	146.0480	C ₈ H ₇ N ₂ O	147.0559	C ₈ H ₆ NO ₂	148.0399
$C_8H_8N_3$	146.0719	$C_8H_9N_3$	147.0798	C ₈ H ₈ N ₂ O	148.0637
$C_9H_6O_2$	146.0368	$C_9H_7O_2$	147.0446	$C_{8}H_{10}N_{3}$	148.0876
C ₉ H ₈ NO	146.0606	C ₉ H ₉ NO	147.0684	C ₉ H ₈ O ₂	148.0524
$C_{9}H_{10}N_{2}$	146.0845	$C_{9}H_{11}N_{2}$	147.0923	C ₉ H ₁₀ NO	148.0763
C ₁₀ H ₁₀ O	146.0732	C ₁₀ H ₁₁ O	147.0810	$C_{9}H_{12}N_{2}$	148.1001
$C_{10}H_{12}N$	146.0970	C ₁₀ H ₁₃ N	147.1049	C ₁₀ H ₁₂ O	148.0888
C ₁₁ H ₁₄	146.1096	C ₁₁ H ₁₅	147.1174	$C_{10}H_{14}N$	148.1127
C _{II} N	146.0031	C ₁₁ HN	147.0109	C ₁₀ N ₂	148.0062
$C_{12}H_{2}$	146.0157	C ₁₂ H ₃	147.0235	C ₁₁ H ₁₆	148.1253
147		148		C _{II} O	147.9949
C ₄ H ₇ N ₂ O ₄	147.0406	C ₄ H ₈ N ₂ O ₄	148.0484	$C_{11}H_2N$	148.0187
C ₄ H ₉ N ₃ O ₃	147.0644	$C_4H_{10}N_3O_3$	148.0723	C ₁₂ H ₄	148.0313
$C_4H_{11}N_4O_2$	147.0883	$C_4H_{12}N_4O_2$	148.0961	149	
C ₅ H ₉ NO ₄	147.0532	C ₅ H ₁₀ NO ₄	148.0610	$C_4H_9N_2O_4$	149.0563
C ₅ H ₁₁ N ₂ O ₃	147.0770	$C_{5}H_{12}N_{2}O_{3}$	148.0848	$C_4H_{11}N_3O_3$	149.0801
C ₅ H ₁₃ N ₃ O ₂	147.1009	$C_5H_{14}N_3O_2$	148.1087	$C_4H_{13}N_4O_2$	149.1040
C ₅ H ₁₅ N ₄ O	147.1247	$C_5H_{16}N_4O$	148.1325	C ₅ H ₁₁ NO ₄	149.0688
C ₆ H ₁₁ O ₄	147.0657	$C_5N_4O_2$	148.0022	$C_{5}H_{13}N_{2}O_{3}$	149.0927
C ₆ H ₁₃ NO ₃	147.0896	$C_{6}H_{12}O_{4}$	148.0735	$C_{5}H_{15}N_{3}O_{2}$	149.1165
C ₆ H ₁₅ N ₂ O ₂	147.1134	$C_6H_{14}NO_3$	148.0974	$C_5HN_4O_2$	149.0100
C ₆ H ₁₇ N ₃ O	147.1373	$C_6H_{16}N_2O_2$	148.1213	$C_6H_{13}O_4$	149.0814
C ₆ HN ₃ O ₂	147.0069	$C_6N_2O_3$	147.9909	C ₆ H ₁₅ NO ₃	149.1052
C ₆ H ₃ N ₄ O	147.0308	$C_6H_2N_3O_2$	148.0147	C ₆ HN ₂ O ₃	148.9987

	FM		FM		FM
$C_{H}N_{3}O_{7}$	149.0226	C ₆ H ₄ N ₃ O ₂	150.0304	C ₆ H ₇ N ₄ O	151.0621
C ₆ H ₅ N ₄ O	149.0464	C ₆ H ₆ N ₄ O	150.0542	C ₇ H ₃ O ₄	151.0031
C ₇ HO ₄	148.9874	C ₇ H ₂ O ₄	149.9953	C ₇ H ₅ NO ₃	151.0269
C,H,NO,	149.0113	$C_7 H_4 NO_3$	150.0191	$C_7H_7N_2O_2$	151.0508
C,H,N,O,	149.0351	C ₇ H ₆ N ₂ O ₂	150.0429	C ₇ H ₉ N ₃ O	151.0746
C,H,N,O	149.0590	C ₇ H ₈ N ₃ O	150.0668	$C_7 H_{11} N_4$	151.0985
C ₇ H ₉ N ₄	149.0829	$C_{7}H_{10}N_{4}$	150.0907	$C_8H_7O_3$	151.0395
C,HO,	149.0238	$C_8H_6O_3$	150.0317	C ₈ H ₉ NO ₂	151.0634
C,H,NO,	149.0477	C ₈ H ₈ NO,	150.0555	C ₈ H ₁₁ N ₂ O	151.0872
C,H,N,O	149.0715	$C_{8}H_{10}N_{2}O$	150.0794	$C_{8}H_{13}N_{3}$	151.1111
$C_{8}H_{11}N_{3}$	149.0954	$C_{8}H_{12}N_{3}$	150.1032	$C_9H_{11}O_2$	151.0759
C ₉ H ₉ O ₂	149.0603	$C_{9}H_{10}O_{2}$	150.0681	C ₉ H ₁₃ NO	151.0998
C ₉ H ₁₁ NO	149.0841	C ₉ H ₁₂ NO	150.0919	$C_{9}H_{15}N_{2}$	151.1236
$C_{9}H_{13}N_{2}$	149.1080	$C_{9}H_{14}N_{2}$	150.1158	C ₉ HN ₃	151.0171
C ₁₀ H ₁₃ O	149.0967	C ₉ N ₃	150.0093	C ₁₀ H ₁₅ O	151.1123
C ₁₀ H ₁₅ N	149.1205	$C_{10}H_{14}O$	150.1045	C ₁₀ H ₁₇ N	151.1362
$C_{10}HN_2$	149.0140	$C_{10}H_{16}N$	150.1284	C ₁₀ HNO	151.0058
C ₁₁ H ₁₇	149.1331	C ₁₀ NO	149.9980	$C_{10}H_{3}N_{2}$	151.0297
C ₁₁ HO	149.0027	$C_{10}H_{2}N_{2}$	150.0218	C ₁₁ H ₁₉	151.1488
C ₁₁ H ₃ N	149.0266	C ₁₁ H ₁₈	150.1409	C ₁₁ H ₃ O	151.0184
C ₁₂ H,	149.0391	$C_{11}H_2O$	150.0106	C ₁₁ H ₅ N	151.0422
150		C ₁₁ H ₄ N	150.0344	$C_{12}H_7$	151.0548
$C_4 H_{10} N_2 O_4$	150.0641	C ₁₂ H ₆	150.0470	152	
$C_4H_{12}N_3O_3$	150.0879	151		$C_4H_{12}N_2O_4$	152.0797
$C_4H_{14}N_4O_2$	150.1118	$C_4H_{11}N_2O_4$	151.0719	C ₅ N ₂ O ₄	151.9858
C ₅ H ₁₂ NO ₄	150.0766	C ₄ H ₁₃ N ₃ O ₃	151.0958	$C_5H_2N_3O_3$	152.0096
$C_{5}H_{14}N_{2}O_{3}$	150.1005	C ₅ H ₁₃ NO ₄	151.0845	C ₅ H ₄ N ₄ O ₂	152.0335
$C_5N_3O_3$	149.9940	C ₅ HN ₃ O ₃	151.0018	C ₆ H ₂ NO ₄	151.9983
$C_5H_2N_4O_2$	150.0178	$C_5H_3N_4O_2$	151.0257	C ₆ H ₄ N ₂ O ₃	152.0222
$C_6H_{14}O_4$	150.0892	C ₆ HNO ₄	150.9905	C ₆ H ₆ N ₃ O ₂	152.0460
C ₆ NO ₄	149.9827	$C_6H_3N_2O_3$	151.0144	C ₆ H ₈ N ₄ O	152.0699
C ₆ H ₂ N ₂ O ₃	150.0065	$C_6H_5N_3O_2$	151.0382	C ₇ H ₄ O ₄	152.0109
	FM		FM		FM
---	----------	---	-------------------------	---	----------
C ₇ H ₆ NO ₃	152.0348	C,H,NO,	153.0426	C ₇ H ₈ NO ₃	154.0504
C ₇ H ₈ N,O,	152.0586	C ₇ H ₉ N ₂ O ₂	153.0664	C,H ₁₀ N,O,	154.0743
C ₇ H ₁₀ N ₃ O	152.0825	C ₇ H ₁₁ N ₂ O	153.0903	C ₇ H ₁ ,N ₃ O	154.0981
C ₇ H ₁₂ N ₄	152.1063	$C_7H_{13}N_4$	153.1142	$C_{7}H_{14}N_{4}$	154.1220
C ₈ H ₈ O ₃	152.0473	C,HO	153.0552	$C_8H_{10}O_3$	154.0630
$C_8H_{10}NO_2$	152.0712	C ₈ H ₁₁ NO,	153.0790	$C_{8}H_{1}$,NO,	154.0868
$C_{8}H_{12}N_{2}O$	152.0950	C ₉ H ₁₃ N ₂ O	153.1029	C,H,4N,O	154.1107
$C_{8}H_{14}N_{3}$	152.1189	$C_{8}H_{15}N_{3}$	153.1267	$C_{8}H_{16}N_{3}$	154.1346
C ₈ N ₄	152.0124	C ₈ HN ₄	153.0202	C ₈ N ₃ O	154.0042
$C_{9}H_{12}O_{2}$	152.0837	$C_{9}H_{13}O_{2}$	153.0916	C ₈ H ₂ N ₄	154.0280
C ₉ H ₁₄ NO	152.1076	C ₉ H ₁₅ NO	153.1154	$C_9H_{14}O_2$	154.0994
$C_{9}H_{16}N_{2}$	152.1315	$C_{9}H_{17}N_{2}$	153.1393	C9H16NO	154.1233
C ₉ N ₂ O	152.0011	C ₉ HN ₂ O	153.0089	C_9NO_2	153.9929
$C_9H_2N_3$	152.0249	C ₉ H ₃ N ₃	153.0328	$C_{9}H_{18}N_{2}$	154.1471
C ₁₀ H ₁₆ O	152.1202	C ₁₀ H ₁₇ O	153.1280	C ₉ H ₂ N ₂ O	154.0167
C ₁₀ O ₂	151.9898	C ₁₀ HO ₂	152.9976	C ₉ H ₄ N ₃	154.0406
C ₁₀ H ₁₈ N	152.1440	C ₁₀ H ₁₉ N	153.1519	C ₁₀ H ₁₈ O	154.1358
C ₁₀ H ₂ NO	152.0136	C ₁₀ H ₃ NO	153.0215	C ₁₀ H ₂ O ₂	154.0054
$C_{10}H_{4}N_{2}$	152.0375	$C_{10}H_{5}N_{2}$	<u> 153.0453 </u>	$C_{10}H_{20}N$	154.1597
C ₁₁ H ₂₀	152.1566	C ₁₁ H ₂₁	153.1644	C ₁₀ H ₄ NO	154.0293
C ₁₁ H ₄ O	152.0262	C ₁₁ H ₅ O	153.0340	$C_{10}H_{6}N_{2}$	154.0532
C ₁₁ H ₆ N	152.0501	C ₁₁ H ₇ N	153.0579	C ₁₁ H ₂₂	154.1722
C ₁₂ H ₈	152.0626	C ₁₂ H ₉	153.0705	C11H6O	154.0419
153		154		C ₁₁ H ₈ N	154.0657
C ₅ HN ₂ O ₄	152.9936	$C_5H_2N_2O_4$	154.0014	C ₁₂ H ₁₀	154.0783
C ₅ H ₃ N ₃ O ₃	153.0175	$C_5H_4N_3O_3$	154.0253	155	
C ₅ H ₅ N ₄ O ₂	153.0413	$C_5H_6N_4O_2$	154.0491	C ₅ H ₃ N ₂ O ₄	155.0093
C ₆ H ₃ NO ₄	153.0062	C ₆ H ₄ NO ₄	154.0140	C ₅ H ₅ N ₃ O ₃	155.0331
C ₆ H ₅ N ₂ O ₃	153.0300	C ₆ H ₆ N ₂ O ₃	154.0379	C ₅ H ₇ N ₄ O ₂	155.0570
C ₆ H ₇ N ₃ O ₂	153.0539	C ₆ H ₈ N ₃ O ₂	154.0617	C ₆ H ₅ NO ₄	155.0218
C ₆ H ₉ N ₄ O	153.0777	C ₆ H ₁₀ N ₄ O	154.0856	C ₆ H ₇ N ₂ O ₃	155.0457
C ₇ H ₅ O ₄	153.0187	C ₇ H ₆ O ₄	154.0266	C ₆ H ₉ N ₃ O ₂	155.0695

	FM	-	FM		FM
C ₆ H ₁₁ N ₄ O	155.0934	C ₆ H ₂ N ₂ O ₂	156.0535	C ₁₃	156.0000
C ₇ H ₇ O ₄	155.0344	$C_{6}H_{10}N_{3}O_{7}$	156.0774	157	
C ₇ H ₉ NO ₃	155.0583	C ₆ H ₁₂ N ₄ O	156.1012	C,H,N,O,	157.0249
C,H,N,O,	155.0821	$C_7H_8O_4$	156.0422	C,H,N,O,	157.0488
C ₇ H ₁₃ N ₃ O	155.1060	C ₇ H ₁₀ NO ₃	156.0661	C ₅ H ₉ N ₄ O ₂	157.0726
$C_7H_{15}N_4$	155.1298	$C_7 H_{12} N_2 O_2$	156.0899	C ₆ H ₇ NO ₄	157.0375
$C_{8}H_{11}O_{3}$	155.0708	C ₇ H ₁₄ N ₃ O	156.1138	C ₆ H ₉ N ₂ O ₃	157.0614
$C_8H_{13}NO_2$	155.0947	$C_{7}H_{16}N_{4}$	156.1377	$C_6H_{11}N_3O_2$	157.0852
$C_{8}H_{15}N_{2}O$	155.1185	C ₇ N ₄ O	156.0073	C ₆ H ₁₃ N ₄ O	157.1091
$C_8 H_{17} N_3$	155.1424	$C_8H_{12}O_3$	156.0786	C ₇ H ₉ O ₄	157.0501
C ₈ HN ₃ O	155.0120	$C_8H_{14}NO_2$	156.1025	C ₇ H ₁₁ NO ₃	157.0739
C ₈ H ₃ N ₄	155.0359	C ₈ H ₁₆ N ₂ O	156.1264	$C_{7}H_{13}N_{2}O_{2}$	157.0978
C ₉ H ₁₅ O ₂	155.1072	$C_8N_2O_2$	155.9960	C ₇ H ₁₅ N ₃ O	157.1216
C ₉ H ₁₇ NO	155.1311	$C_8H_{18}N_3$	156.1502	$C_{7}H_{17}N_{4}$	157.1455
C ₉ HNO ₂	155.0007	C ₈ H ₂ N ₃ O	156.0198	C7HN4O	157.0151
$C_{9}H_{19}N_{2}$	155.1549	C ₈ H ₄ N ₄	156.0437	C ₈ H ₁₃ O ₃	157.0865
C ₉ H ₃ N ₂ O	155.0246	$C_{9}H_{16}O_{2}$	156.1151	C ₈ H ₁₅ NO ₂	157.1103
C ₉ H ₅ N ₃	155.0484	C ₉ O ₃	155.9847	C ₈ H ₁₇ N ₂ O	157.1342
C ₁₀ H ₁₉ O	155.1436	C ₉ H ₁₈ NO	156.1389	C ₈ HN ₂ O ₂	157.0038
C ₁₀ H ₃ O ₂	155.0133	C ₉ H ₂ NO ₂	156.0085	$C_{8}H_{19}N_{3}$	157.1580
C ₁₀ H ₂₁ N	155.1675	$C_{9}H_{20}N_{2}$	156.1628	C ₈ H ₃ N ₃ O	157.0277
C ₁₀ H ₅ NO	155.0371	C ₉ H ₄ N ₂ O	156.0324	C ₈ H ₅ N ₄	157.0515
$C_{10}H_{7}N_{2}$	155.0610	C ₉ H ₆ N ₃	156.0563	C ₉ H ₁₇ O ₂	157.1229
C ₁₁ H ₂₃	155.1801	C ₁₀ H ₂₀ O	156.1515	C ₉ HO ₃	156.9925
C ₁₁ H ₇ O	155.0497	C ₁₀ H ₄ O ₂	156.0211	C ₉ H ₁₉ NO	157.1467
C ₁₁ H ₉ N	155.0736	$C_{10}H_{22}N$	156.1753	C ₉ H ₃ NO ₂	157.0164
C ₁₂ H ₁₁	155.0861	C ₁₀ H ₆ NO	156.0449	$C_9H_{21}N_2$	157.1706
156		$C_{10}H_{8}N_{2}$	156.0688	C ₉ H ₅ N ₂ O	157.0402
C ₅ H ₄ N ₂ O ₄	156.0171	$C_{11}H_{24}$	156.1879	C ₉ H ₇ N ₃	157.0641
C ₅ H ₆ N ₃ O ₃	156.0410	C ₁₁ H ₈ O	156.0575	C ₁₀ H ₂₁ O	157.1593
C ₅ H ₈ N ₄ O ₂	156.0648	C ₁₁ H ₁₀ N	156.0814	$C_{10}H_{5}O_{2}$	157.0289
C ₆ H ₆ NO ₄	156.0297	C ₁₂ H ₁₂	156.0939	$C_{10}H_{23}N$	157.1832

`

	FM		FM		FM
C ₁₀ H ₇ NO	157.0528	C ₉ H₄NO,	158.0242	C ₈ H,N,O,	159.0195
$C_{10}H_{9}N_{7}$	157.0767	C ₉ H ₂ ,N,	158.1784	C ₈ H, N,	159.1737
C _{II} H ₀ O	157.0653	C ₀ H ₆ N,O	158.0480	C ₈ H ₅ N ₃ O	159.0433
C ₁₁ H ₁₁ N	157.0892	C _o H ₈ N ₃	158.0719	C ₈ H ₇ N ₄	159.0672
$C_{12}H_{13}$	157.1018	C ₁₀ H ₂₂ O	158.1671	$C_{9}H_{19}O_{2}$	159.1385
C ₁₃ H	157.0078	$C_{10}H_6O_2$	158.0368	C _o H _o O ₃	159.0082
158		C ₁₀ H ₈ NO	158.0606	C ₉ H ₂ NO	159.1624
C ₅ H ₆ N ₂ O ₄	158.0328	$C_{10}H_{10}N_{2}$	158.0845	C ₉ H,NO,	159.0320
C,H,N,O,	158.0566	C ₁₁ H ₁₀ O	158.0732	C ₉ H ₇ N ₂ O	159.0559
$C_{5}H_{10}N_{4}O_{2}$	158.0805	$C_{11}H_{12}N$	158.0970	C ₉ H ₉ N ₃	159.0798
C ₆ H ₈ NO ₄	158.0453	C ₁₂ H ₁₄	158.1096	$C_{10}H_{7}O_{7}$	159.0446
$C_6 H_{10} N_2 O_3$	158.0692	C ₁₂ N	158.0031	C ₁₀ H ₉ NO	159.0684
$C_{6}H_{12}N_{3}O_{7}$	158.0930	С ₁₃ Н,	158.0157	$C_{10}H_{11}N_{2}$	159.0923
$C_6H_{14}N_4O$	158.1169	159		C _{II} H _{II} O	159.0810
$C_{7}H_{10}O_{4}$	158.0579	C ₅ H ₇ N ₂ O ₄	159.0406	C ₁₁ H ₁₃ N	159.1049
$C_7 H_{12} NO_3$	158.0817	$C_5H_9N_3O_3$	159.0644	C ₁₂ H ₁₅	159.1174
$C_{7}H_{14}N_{2}O_{2}$	158.1056	$C_5H_{11}N_4O_2$	159.0883	C ₁₂ HN	159.0109
C ₇ H ₁₆ N ₃ O	158.1295	C ₆ H ₉ NO ₄ ·	159.0532	C ₁₃ H ₃	158.0235
$C_7 N_3 O_2$	157.9991	C ₆ H ₁₁ N ₂ O ₃	159.0770	160	
C ₇ H ₁₈ N ₄	158.1533	$C_{6}H_{13}N_{3}O_{2}$	159.1009	C ₅ H ₈ N ₂ O ₄	160.0484
C ₇ H ₂ N ₄ O	158.0229	C ₆ H ₁₅ N ₄ O	159.1247	C ₅ H ₁₀ N ₃ O ₃	160.0723
$C_8H_{14}O_3$	158.0943	$C_7H_{11}O_4$	159.0657	$C_{5}H_{12}N_{4}O_{2}$	160.0961
$C_8H_{16}NO_2$	158.1182	C ₇ H ₁₃ NO ₃	159.0896	$C_6H_{10}NO_4$	160.0610
C ₈ NO ₃	157.9878	C ₇ H ₁₅ N ₂ O ₂	159.1134	$C_{6}H_{12}N_{2}O_{3}$	160.0848
$C_8H_{18}N_2O$	158.1420	C ₇ H ₁₇ N ₃ O	159.1373	$C_{6}H_{14}N_{3}O_{2}$	160.1087
$C_8H_2N_2O_2$	158.0116	$C_7 HN_3 O_2$	159.0069	$C_6H_{16}N_4O$	160.1325
$C_{8}H_{20}N_{3}$	158.1659	$C_{7}H_{19}N_{4}$	159.1611	$C_6N_4O_2$	160.0022
C ₈ H ₄ N ₃ O	158.0355	C ₇ H ₃ N ₄ O	159.0308	$C_{7}H_{12}O_{4}$	160.0735
C ₈ H ₆ N ₄	158.0594	$C_{8}H_{15}O_{3}$	159.1021	$C_{7}H_{14}NO_{3}$	160.0974
C ₉ H ₁₈ O ₂	158.1307	C ₈ H ₁₇ NO ₂	159.1260	C ₇ H ₁₆ N ₂ O ₂	160.1213
C ₉ H ₂ O ₃	158.0003	C ₈ HNO ₃	158.9956	C ₇ N ₂ O ₃	159.9909
C ₉ H ₂₀ NO	158.1546	C ₈ H ₁₉ N,O	159.1498	$C_{7}H_{18}N_{3}O$	160.1451

	FM		FM	· · · · · · · · · · · · · · · · · · ·	FM
C,H,N,O,	160.0147	C ₆ H ₁₅ N ₃ O ₂	161.1165	C ₅ H ₁₂ N ₃ O ₃	162.0879
C ₇ H ₂₀ N ₄	160.1690	C ₆ H ₁₇ N ₄ O	161.1404	$C_{5}H_{14}N_{4}O_{2}$	162.1118
C ₇ H ₄ N ₄ O	160.0386	$C_6 HN_4 O_2$	161.0100	$C_6H_{12}NO_4$	162.0766
C,H,60,	160.1100	C ₇ H ₁₃ O ₄	161.0814	$C_{6}H_{14}N_{2}O_{3}$	162.1005
C ₀	159.9796	C ₇ H ₁₅ NO ₃	161.1052	$C_{6}H_{16}N_{3}O_{7}$	162.1244
C _. H _. NO,	160.1338	C ₇ H ₁₇ N ₂ O ₂	161.1291	C ₆ N ₃ O ₃	161.9940
C,H,NO,	160.0034	C ₇ HN ₂ O ₃	160.9987	C ₆ H ₁₈ N ₄ O	162.1482
C_H_NO	160.1577	C ₇ H ₁₉ N ₃ O	161.1529	C ₆ H ₂ N ₄ O ₂	162.0178
C,H,N,O,	160.0273	$C_7H_3N_3O_2$	161.0226	C ₂ H ₁₄ O ₄	162.0892
C,H,N,O	160.0511	C ₇ H ₅ N ₄ O	161.0464	C ₂ H ₁₆ NO ₂	162.1131
C.H.N.	160.0750	$C_{8}H_{17}O_{3}$	161.1178	$C_7 NO_4$	161.9827
$C_{0}H_{20}O_{2}$	160.1464	C ₈ HO ₄	160.9874	C,H ₁₈ N,O,	162.1369
$C_0H_4O_2$	160.0160	$C_8H_{19}NO_2$	161.1416	C,H,N,O,	162.0065
C ₀ H ₂ NO ₂	160.0399	C ₈ H ₃ NO ₃	161.0113	C,H,N,O,	162.0304
C ₀ H ₀ N ₂ O	160.0637	$C_8H_5N_2O_2$	161.0351	C ₇ H ₆ N ₄ O	162.0542
$C_{0}H_{10}N_{3}$	160.0876	$C_8H_7N_3O$	161.0590	C _s H _{is} O ₃	162.1256
$C_{10}H_{8}O_{7}$	160.0524	C ₈ H ₉ N ₄	161.0829	C ₈ H ₂ O ₄	161.9953
C ₁₀ H ₁₀ NO	160.0763		161.0230	C ₈ H ₄ NO ₃	162.0191
C ₁₀ H ₁ ,N,	160.1001	C H N O	161.0715	C ₈ H ₆ N ₂ O ₂	162.0429
C ₁₁ H ₁₂ O	160.0888	C H N	161.0954	C ₈ H ₈ N ₃ O	162.0668
$C_{11}H_{14}N$	160.1127	$C_{9}H_{11}H_{3}$	161.0603	$C_{8}H_{10}N_{4}$	162.0907
$C_{11}N_{2}$	160.0062	CHNO	161.0841	C ₉ H ₆ O ₃	162.0317
$C_{12}H_{16}$	160.1253	C. H. N.	161.1080	C ₉ H ₈ NO ₂	162.0555
C ₁₂ O	159.9949	C,,H,,O	161.0967	$C_9H_{10}N_2O$	162.0794
$C_{12}H_2N$	160.0187	C, H, N	161.1205	$C_9H_{12}N_3$	162.1032
C ₁₃ H ₄	160.0313	C ₁ HN,	161.0140	C ₁₀ H ₁₀ O ₂	162.0681
161		C ₁₂ H ₁₇	161.1331	C ₁₀ H ₁₂ NO	162.0919
C ₅ H ₉ N ₂ O ₄	161.0563	C ₁₂ HO	161.0027	C ₁₁ H ₁₄ O	162.1045
C ₅ H ₁₁ N ₃ O ₃	161.0801	C ₁₂ H ₃ N	161.0266	C ₁₁ H ₁₆ N	162.1284
C ₅ H ₁₃ N ₄ O ₂	161.1040	C ₁₃ H ₅	161.0391	C ₁₁ NO	161.9980
C ₆ H ₁₁ NO ₄	161.0688	162		$C_{11}H_{2}N_{2}$	162.0218
C ₆ H ₁₃ N ₂ O ₃	161.0927	$C_{5}H_{10}N_{2}O_{4}$	162.0641	C ₁₂ H ₁₈	162 1409

	FM		FM		FM
C ₁₂ H ₂ O	162.0106	C ₁₁ H ₁₇ N	163.1362	C ₁₀ H ₁₄ NO	164.1076
C ₁₂ H ₄ N	162.0344	C ₁₁ HNO	163.0058	$C_{10}H_{16}N_{2}$	164.1315
$C_{13}H_6$	162.0470	$C_{11}H_3N_2$	163.0297	$C_{10}N_2O$	164.0011
163		C ₁ ,H ₁₉	163.1488	$C_{10}H_{2}N_{3}$	164.0249
C ₅ H ₁₁ N ₂ O ₄	163.0719	C ₁₂ H ₃ O	163.0184	C ₁₁ H ₁₆ O	164.1202
$C_{5}H_{13}N_{3}O_{3}$	163.0958	C ₁₂ H ₅ N	163.0422	$C_{11}O_{2}$	163.9898
$C_{5}H_{15}N_{4}O_{2}$	163.1196	$C_{13}H_7$	163.0548	$C_{11}H_{18}N$	164.1440
$C_6H_{13}NO_4$	163.0845	164		C ₁₁ H ₂ NO	164.0136
$C_{6}H_{15}N_{2}O_{3}$	163.1083	$C_{5}H_{12}N_{2}O_{4}$	164.0797	$C_{11}H_4N_2$	164.0375
C ₆ H ₁₇ N ₃ O ₂	163.1322	$C_5H_{14}N_3O_3$	164.1036	C ₁₂ H ₂₀	164.1566
C ₆ HN ₃ O ₃	163.0018	$C_5H_{16}N_4O_2$	164.1275	C ₁₂ H ₄ O	164.0262
C ₆ H ₃ N ₄ O ₂	163.0257	C ₆ H ₁₄ NO ₄	164.0923	C ₁₂ H ₆ N	164.0501
C ₇ H ₁₅ O ₄	163.0970	$C_{6}H_{16}N_{2}O_{3}$	164.1162	C ₁₃ H ₈	164.0626
C ₇ H ₁₇ NO ₃	163.1209	C ₆ N ₂ O ₄	163.9858	165	
C ₇ HNO₄	161.9905	$C_6H_2N_3O_3$	164.0096	$C_{5}H_{13}N_{2}O_{4}$	165.0876
C ₇ H ₃ N ₂ O ₃	163.0144	$C_6H_4N_4O_2$	164.0335	C ₅ H ₁₅ N ₃ O ₃	165.1114
C ₇ H ₅ N ₃ O ₂	163.0382	C ₇ H ₁₆ O ₄	164.1049	C ₆ H ₁₅ NO ₄	165.1001
C ₇ H ₇ N ₄ O	163.0621	C ₇ H ₂ NO ₄	163.9983	$C_6HN_2O_4$	164.9936
C ₈ H ₃ O ₄	163.0031	$C_7H_4N_2O_3$	164.0222	$C_6H_3N_3O_3$	165.0175
C ₈ H ₅ NO ₃	163.0269	$C_7H_6N_3O_2$	164.0460	$C_6H_5N_4O_2$	165.0413
C ₈ H ₇ N ₂ O ₂	163.0508	C ₇ H ₈ N ₄ O	164.0699	C ₇ H ₃ NO ₄	165.0062
C ₈ H ₉ N ₃ O	163.0746	C ₈ H ₄ O ₄	164.0109	$C_7H_5N_2O_3$	165.0300
$C_8H_{11}N_4$	163.0985	C ₈ H ₆ NO ₃	164.0348	$C_7H_7N_3O_2$	165.0539
C ₉ H ₇ O ₃	163.0395	$C_8H_8N_2O_2$	164.0586	C7H9N4O	165.0777
C ₉ H ₉ NO ₂	163.0634	$C_{8}H_{10}N_{3}O$	164.0825	C ₈ H ₅ O ₄	165.0187
$C_9H_{11}N_2O$	163.0872	$C_{8}H_{12}N_{4}$	164.1063	C ₈ H ₇ NO ₃	165.0426
C ₉ H ₁₃ N ₃	163.1111	C ₉ H ₈ O ₃	164.0473	$C_8H_9N_2O_2$	165.0664
C ₁₀ H ₁₁ O ₂	163.0759	$C_9H_{10}NO_2$	164.0712	$C_8H_{11}N_3O$	165.0903
C ₁₀ H ₁₃ NO	163.0998	$C_9H_{12}N_2O$	164.0950	$C_{8}H_{13}N_{4}$	165.1142
C ₁₀ H ₁₅ N ₂	163.1236	$C_{9}H_{14}N_{3}$	164.1189	C ₉ H ₉ O ₃	165.0552
C ₁₀ HN ₃	163.0171	C ₉ N ₄	164.0124	$C_9H_{11}NO_2$	165.0790
C ₁₁ H ₁₅ O	163.1123	C ₁₀ H ₁₂ O ₂	164.0837	$C_9H_{13}N_2O$	165.1029

	FM		FM	<u></u>	FM
$C_{9}H_{15}N_{3}$	165.1267	C ₉ H ₁₄ N ₂ O	166.1107	C ₉ H ₁₁ O ₃	167.0708
C ₉ HN ₄	165.0202	$C_{9}H_{16}N_{3}$	166.1346	C ₉ H ₁₃ NO ₂	167.0947
C ₁₀ H ₁₃ O,	165.0916	C ₉ N ₃ O	166.0042	C ₉ H ₁₅ N ₂ O	167.1185
C ₁₀ H ₁₅ NO	165.1154	C ₉ H ₂ N ₄	166.0280	$C_{9}H_{17}N_{3}$	167.1424
$C_{10}H_{17}N_{7}$	165.1393	$C_{10}H_{14}O_{2}$	166.0994	C ₉ HN ₃ O	167.0120
C ₁₀ HN,O	165.0089	C ₁₀ H ₁₆ NO	166.1233	C ₉ H ₃ N ₄	167.0359
$C_{10}H_{3}N_{3}$	165.0328	$C_{10}NO_2$	165.9929	$C_{10}H_{15}O_{2}$	167.1072
C ₁₁ H ₁₇ O	165.1280	$C_{10}H_{18}N_{2}$	166.1471	C ₁₀ H ₁₇ NO	167.1311
C ₁₁ HO ₂	164.9976	C ₁₀ H ₂ N ₂ O	166.0167	C ₁₀ HNO,	167.0007
C ₁₁ H ₁₉ N	165.1519	$C_{10}H_4N_3$	166.0406	$C_{10}H_{19}N_2$	167.1549
C ₁₁ H ₃ NO	165.0215	C ₁₁ H ₁₈ O	166.1358	$C_{10}H_{3}N_{2}O$	167.0246
$C_{11}H_5N_2$	165.0453	$C_{11}H_2O_2$	166.0054	$C_{10}H_{5}N_{3}$	167.04 8 4
C ₁₂ H ₂₁	165.1644	$C_{11}H_{20}N$	166.1597	C ₁₁ H ₁₉ O	167.1436
C ₁₂ H ₅ O	165.0340	C ₁₁ H ₄ NO	166.0293	$C_{11}H_3O_2$	167.0133
C ₁₂ H ₇ N	165.0579	$C_{11}H_6N_2$	166.0532	$C_{11}H_{21}N$	167.1675
C ₁₃ H ₉	165.0705	C ₁₂ H ₂₂	166.1722	C ₁₁ H ₅ NO	167.0371
166		C ₁₂ H ₆ O	166.0419	$C_{11}H_{7}N_{2}$	167.0610
C ₅ H ₁₄ N ₂ O ₄	166.0954	$C_{12}H_8N$	166.0657	C ₁₂ H ₂₃	167.1801
C ₆ H ₂ N ₂ O ₄	166.0014	C ₁₃ H ₁₀	166.0783	C ₁₂ H ₇ O	167.0497
C ₆ H ₄ N ₃ O ₃	166.0253	167		C ₁₂ H ₉ N	167.0736
C ₆ H ₆ N ₄ O ₂	166.0491	$C_6H_3N_2O_4$	167.0093	C ₁₃ H ₁₁	167.0861
C ₇ H ₄ NO ₄	166.0140	$C_6H_5N_3O_3$	167.0331	168	
$C_7H_6N_2O_3$	166.0379	$C_6H_7N_4O_2$	167.0570	$C_6H_4N_2O_4$	168.0171
$C_7H_8N_3O_2$	166.0617	C ₇ H ₅ NO ₄	167.0218	$C_6H_6N_3O_3$	168.0410
C ₇ H ₁₀ N ₄ O	166.0856	C ₇ H ₇ N ₂ O ₃	167.0451	$C_6H_8N_4O_2$	168.0648
C ₈ H ₆ O ₄	166.0266	$C_7H_9N_3O_2$	167.0695	C7H6NO4	168.0297
C ₈ H ₈ NO ₃	166.0504	C ₇ H ₁₁ N ₄ O	167.0934	$C_7H_8N_2O_3$	168.0535
$C_{8}H_{10}N_{2}O_{2}$	166.0743	C ₈ H ₇ O ₄	167.0344	$C_{7}H_{10}N_{3}O_{2}$	168.0774
C ₈ H ₁₂ N ₃ O	166.0981	C ₈ H ₉ NO ₃	167.0583	$C_7 H_{12} N_4 O$	168.1012
C ₈ H ₁₄ N ₄	166.1220	$C_8H_{11}N_2O_2$	167.0821	$C_8H_8O_4$	168.0422
C ₉ H ₁₀ O ₃	166.0630	C ₈ H ₁₃ N ₃ O	167.1060	$C_8H_{10}NO_3$	168.0661
C ₉ H ₁₂ NO ₂	166.0868	$C_{8}H_{15}N_{4}$	167.1298	$C_8H_{12}N_2O_2$	168.0899

•

	FM		FM		FM
$\overline{C_8H_{14}N_3O}$	168.1138	$C_7H_9N_2O_3$	169.0614	C ₁₄ H	169.0078
$C_{8}H_{16}N_{4}$	168.1377	C ₇ H ₁₁ N ₃ O,	169.0852	170	
C ₈ N ₄ O	168.0073	C ₇ H ₁₃ N ₄ O	169.1091	C ₆ H ₆ N ₂ O ₄	170.0328
$C_{9}H_{12}O_{3}$	168.0786	C ₈ H ₉ O ₄	169.0501	C ₆ H ₈ N ₃ O ₃	170.0566
$C_9H_{14}NO_2$	168.1025	C ₈ H ₁₁ NO ₃	169.0739	$C_6 H_{10} N_4 O_2$	170.0805
$C_{9}H_{16}N_{2}O$	168.1264	$C_{8}H_{13}N_{2}O_{2}$	169.0978	C ₇ H ₈ NO ₄	170.0453
$C_9N_2O_2$	167.9960	C ₈ H ₁₅ N ₃ O	169.1216	$C_{7}H_{10}N_{2}O_{3}$	170.0692
$C_{0}H_{18}N_{3}$	168.1502	$C_8H_{17}N_4$	169.1455	C ₇ H ₁ ,N ₃ O ₂	170.0930
C ₉ H ₂ N ₃ O	168.0198	C ₈ HN₄O	169.0151	C ₇ H ₁₄ N ₄ O	170.1169
C ₉ H ₄ N ₄	168.0437	$C_9H_{13}O_3$	169.0865	$C_{8}H_{10}O_{4}$	170.0579
$C_{10}H_{16}O_{2}$	168.1151	C ₉ H ₁₅ NO ₂	169.1103	$C_8H_{12}NO_3$	170.0817
C ₁₀ O ₃	167.9847	$C_{9}H_{17}N_{2}O$	169.1342	$C_{8}H_{14}N_{2}O_{2}$	170.1056
$C_{10}H_{18}NO$	168.1389	C ₉ HN ₂ O ₂	169.0038	C ₈ H ₁₆ N ₃ O	170.1295
$C_{10}H_2NO_2$	168.0085	C ₉ H ₁₉ N ₃	169.1580	$C_8N_3O_2$	169.9991
$C_{10}H_{20}N_{2}$	168.1628	C ₉ H ₃ N ₃ O	169.0277	$C_{8}H_{18}N_{4}$	170.1533
$C_{10}H_4N_2O$	168.0324	C ₉ H ₅ N ₄	169.0515	C ₈ H ₂ N ₄ O	170.0229
$C_{10}H_{6}N_{3}$	168.0563	C ₁₀ H ₁₇ O ₂	169.1229	$C_9H_{14}O_3$	170.0943
C ₁₁ H ₂₀ O	168.1515	C ₁₀ HO ₃	168.9925	$C_9H_{16}NO_2$	170.1182
C ₁₁ H ₄ O ₂	168.0211	C ₁₀ H ₁₉ NO	169.1467	C ₉ NO ₃	169.9878
C ₁₁ H ₂₂ N	168.1753	C ₁₀ H ₃ NO ₂	169.0164	$C_{9}H_{18}N_{2}O$	170.1420
C ₁₁ H ₆ NO	168.0449	$C_{10}H_{21}N_{2}$	169.1706	C ₉ H ₂ N ₂ O ₂	170.0116
$C_{11}H_{8}N_{2}$	168.0688	C ₁₀ H ₅ N ₂ O	169.0402	$C_{9}H_{20}N_{3}$	170.1659
C ₁₂ H ₂₄	168.1879	$C_{10}H_{7}N_{3}$	169.0641	C ₉ H ₄ N ₃ O	170.0355
C ₁₂ H ₈ O	168.0575	C ₁₁ H ₂₁ O	169.1593	C ₉ H ₆ N ₄	170.0594
C ₁₂ H ₁₀ N	168.0814	$C_{11}H_5O_2$	169.0289	C ₁₀ H ₁₈ O ₂	170.1307
C ₁₃ H ₁₂	168.0939	C ₁₁ H ₂₃ N	169.1832	$C_{10}H_{2}O_{3}$	170.0003
C ₁₄	168.0000	C ₁₁ H ₇ NO	169.052 8	C ₁₀ H ₂₀ NO	170.1546
169		$C_{11}H_{9}N_{2}$	169.0767	$C_{10}H_4NO_2$	170.0242
C ₆ H ₅ N ₂ O ₄	169.0249	C ₁₂ H ₂₅	169.1957	$C_{10}H_{22}N_{2}$	170.1784
C ₆ H ₇ N ₃ O ₃	169.0488	C ₁₂ H ₉ O	169.0653	$C_{10}H_{6}N_{2}O$	170.0480
$C_6H_9N_4O_2$	169.0726	$C_{12}H_{11}N$	169.0892	$C_{10}H_{8}N_{3}$	170.0719
C ₇ H ₇ NO ₄	169.0375	C ₁₃ H ₁₃	169.1018	C ₁₁ H ₂₂ O	170.1671

	FM		FM		FM
$C_{11}H_6O_2$	170.0368	C ₉ H ₇ N ₄	171.0672	C ₈ H ₂ N ₂ O ₂	172.0147
$C_{11}H_{24}N$	170.1910	$C_{10}H_{19}O_{2}$	171.1385	$C_{8}H_{20}N_{4}$	172.1690
C ₁₁ H ₈ NO	170.0606	$C_{10}H_{3}O_{3}$	171.0082	C ₈ H ₄ N ₄ O	172.0386
$C_{11}H_{10}N_{2}$	170.0845	C ₁₀ H ₂₁ NO	171.1624	C ₉ H ₁₆ O ₃	172.1100
C ₁₂ H ₂₆	170.2036	$C_{10}H_5NO_2$	171.0320	C ₉ O ₄	171.9796
$C_{12}H_{10}O$	170.0732	$C_{10}H_{23}N_{2}$	171.1863	C ₉ H ₁₈ NO ₂	172.1338
$C_{12}H_{12}N$	170.0970	$C_{10}H_7N_2O$	171.0559	$C_9H_2NO_3$	172.0034
C ₁₃ H ₁₄	170.1096	$C_{10}H_9N_3$	171.0798	$C_{9}H_{20}N_{2}O$	172.1577
C ₁₃ N	170.0031	C ₁₁ H ₂₃ O	171.1750	$C_9H_4N_2O_2$	172.0273
$C_{14}H_2$	170.0157	$C_{11}H_{7}O_{2}$	171.0446	$C_9H_{22}N_3$	172.1815
171		C ₁₁ H ₂₅ N	171.1988	C ₉ H ₆ N ₃ O	172.0511
C ₆ H ₇ N ₂ O ₄	171.0406	C ₁₁ H ₉ NO	171.0684	C ₉ H ₈ N ₄	172.0750
C ₆ H ₉ N ₃ O ₃	171.0644	$C_{11}H_{11}N_{2}$	171.0923	C ₁₀ H ₂₀ O ₂	172.1464
$C_{6}H_{11}N_{4}O_{2}$	171.0883	C ₁₂ H ₁₁ O	171.0810	$C_{10}H_4O_3$	172.0160
C ₇ H ₉ NO ₄	171.0532	C ₁₂ H ₁₃ N	171.1049	C ₁₀ H ₂₂ NO	172.1702
$C_{7}H_{11}N_{2}O_{3}$	171.0770	C ₁₃ H ₁₅	171.1174	C ₁₀ H ₆ NO ₂	172.0399
C ₇ H ₁₃ N ₃ O ₂	171.1009	C ₁₃ HN	171.0109	$C_{10}H_{24}N_{2}$	172.1941
C ₇ H ₁₅ N ₄ O	171.1247	C ₁₄ H ₃	171.0235	$C_{10}H_8N_2O$	172.0637
$C_{8}H_{11}O_{4}$	171.0657	172		$C_{10}H_{10}N_{3}$	172.0876
C ₈ H ₁₃ NO ₃	171.0896	$C_6H_8N_2O_4$	172.0484	C ₁₁ H ₂₄ O	172.1828
$C_{8}H_{15}N_{2}O_{2}$	171.1134	$C_6 H_{10} N_3 O_3$	172.0723	$C_{11}H_8O_2$	172.0524
$C_{8}H_{17}N_{3}O$	171.1373	$C_6 H_{12} N_4 O_2$	172.0961	C ₁₁ N ₁₀ NO	172.0763
C ₈ HN ₃ O ₂	171.0069	$C_7H_{10}NO_4$	172.0610	$C_{11}H_{12}N_{2}$	172.1001
$C_{8}H_{19}N_{4}$	171.1611	$C_7 H_{12} N_2 O_3$	172.0848	C ₁₂ H ₁₂ O	172.0888
C ₈ H ₃ N ₄ O	171.0308	$C_7 H_{14} N_3 O_2$	172.1087	$C_{12}H_{14}N$	172.1127
$C_9H_{15}O_3$	171.1021	$C_7 H_{16} N_4 O$	172.1325	$C_{12}N_{2}$	172.0062
$C_9H_{17}NO_2$	171.1260	C ₇ N ₄ O ₂	172.0022	C ₁₃ H ₁₆	172.1253
C ₉ HNO ₃	170.9956	$C_{8}H_{12}O_{4}$	172.0735	C ₁₃ O	171.9949
$C_9H_{19}N_2O$	171.1498	$C_8H_{14}NO_3$	172.0974	$C_{13}H_2N$	172.0187
C ₉ H ₃ N ₂ O ₂	171.0195	$C_8H_{16}N_2O_2$	172.1213	$C_{14}H_4$	172.0313
$C_9H_{21}N_3$	171.1737	$C_8N_2O_3$	171.9909	173	
C ₉ H ₅ N ₃ O	171.0433	$C_8H_{18}N_3O$	172.1451	$C_6H_9N_2O_4$	173.0563

`

, <u> </u>	FM		FM		FM
$\overline{C_6H_{11}N_3O_3}$	173.0801	C ₁₁ H ₁₃ N,	173.1080	C ₉ H ₆ N ₂ O ₂	174.0429
$C_{6}H_{13}N_{4}O_{2}$	173.1040	C ₁₂ H ₁₃ O	173.0967	C ₀ H ₈ N ₃ O	174.0668
C ₇ H ₁₁ NO ₄	173.0688	C ₁₂ H ₁₅ N	173.1205	$C_9H_{10}N_4$	174.0907
C ₇ H ₁₃ N ₂ O ₃	173.0927	C_{1} ,HN,	173.0140	C ₁₀ H ₂ ,O,	174.1620
C ₇ H ₁₅ N ₃ O ₇	173.1165	C ₁₃ H ₁₇	173.1331	$C_{10}H_{6}O_{3}$	174.0317
C ₇ H ₁₇ N ₄ O	173.1404	C ₁₃ HO	173.0027	$C_{10}H_8NO_2$	174.0555
$C_7 HN_4 O_2$	173.0100	C ₁₃ H ₃ N	173.0266	C ₁₀ H ₁₀ N ₂ O	174.0794
C ₈ H ₁₃ O ₄	173.0814	$C_{14}H_5$	173.0391	$C_{10}H_{12}N_{3}$	174.1032
C ₈ H ₁₅ NO ₃	173.1052	174		$C_{11}H_{10}O_{2}$	174.0681
$C_{8}H_{17}N_{2}O_{2}$	173.1291	$C_{6}H_{10}N_{2}O_{4}$	174.0641	C ₁₁ H ₁₂ NO	174.0919
C ₈ HN ₂ O ₃	172.9987	$C_{6}H_{12}N_{3}O_{3}$	174.0879	$C_{11}H_{14}N_{2}$	174.1158
C ₈ H ₁₉ N ₃ O	173.1529	$C_{6}H_{14}N_{4}O_{2}$	174.1118	$C_{11}N_3$	174.0093
C ₈ H ₃ N ₃ O ₂	173.0226	C ₇ H ₁₂ NO ₄	174.0766	C ₁₂ H ₁₄ O	174.1045
$C_{8}H_{21}N_{4}$	173.1768	C ₇ H ₁₄ N ₂ O ₃	174.1005	C ₁₂ H ₁₆ N	174.12 8 4
C ₈ H ₅ N ₄ O	173.0464	$C_7 H_{16} N_3 O_2$	174.1244	C ₁₂ NO	173.9980
C ₉ H ₁₇ O ₃	173.1178	C ₇ N ₃ O ₃	173.9940	$C_{12}H_2N_2$	174.0218
C ₉ HO₄	172.9874	C ₇ H ₁₈ N ₄ O	174.1482	C ₁₃ H ₁₈	174.1409
C ₉ H ₁₉ NO ₂	173.1416	$C_7H_2N_4O_2$	174.0178	C ₁₃ H ₂ O	174.0106
C ₉ H ₃ NO ₃	173.0113	$C_8H_{14}O_4$	174.0892	C ₁₃ H ₄ N	174.0344
$C_9H_{21}N_2O$	173.1655	$C_{8}H_{16}NO_{3}$	174.1131	C ₁₄ H ₆	174.0470
C ₉ H ₅ N ₂ O ₂	173.0351	C ₈ NO ₄	173.9827	175	
C ₉ H ₂₃ N ₃	173.1894	$C_{8}H_{18}N_{2}O_{2}$	174.1369	$C_{6}H_{11}N_{2}O_{4}$	175.0719
C ₉ H ₇ N ₃ O	173.0590	$C_8H_2N_2O_3$	174.0065	$C_{6}H_{13}N_{3}O_{3}$	175.0958
C ₉ H ₉ N ₄	173.0829	$C_8 H_{20} N_3 O$	174.1608	$C_{6}H_{15}N_{4}O_{2}$	175.1196
C ₁₀ H ₂₁ O ₂	173.1542	$C_8H_4N_3O_2$	174.0304	C ₇ H ₁₃ NO ₄	175.0845
C ₁₀ H ₅ O ₃	173.0238	$C_{8}H_{22}N_{4}$	174.1846	$C_{7}H_{15}N_{2}O_{3}$	175.1083
C ₁₀ H ₂₃ NO	173.1781	C ₈ H ₆ N ₄ O	174.0542	C ₇ H ₁₇ N ₃ O ₂	175.1322
C ₁₀ H ₇ NO ₂	173.0477	$C_{9}H_{18}O_{3}$	174.1256	C ₇ HN ₃ O ₃	175.0018
C ₁₀ H ₉ N ₂ O	173.0715	$C_9H_2O_4$	173.9953	$C_7H_{19}N_4O$	175.1560
$C_{10}H_{11}N_{3}$	173.0954	$C_9H_{20}NO_2$	174.1495	$C_7H_3N_4O_2$	175.0257
$C_{11}H_9O_2$	173.0603	$C_9H_4NO_3$	174.0191	$C_8H_{15}O_4$	175.0970
C ₁₁ H ₁₁ NO	173.0841	$C_9H_{22}N_2O$	174.1733	C ₈ H ₁₇ NO ₃	175.1209

•

,

	FM		FM		FM
	174 0005		176 1275	<u> </u>	175 0808
$C_8 HNO_4$	175 1447	$C_{6} \Pi_{16} \Pi_{4} O_{2}$	176.0002	$C_{12}O_2$	176 1440
$C_8H_{19}N_2O_2$	1/5.144/	$C_7 H_{14} N O_4$	176.0923	$C_{12}H_{18}N$	170.1440
$C_8H_3N_2O_3$	1/5.0144	$C_7 H_{16} N_2 O_3$	1/6.1162	$C_{12}H_2NO$	1/6.0136
$C_8H_{21}N_3O$	175.1686	$C_7 N_2 O_4$	175.9858	$C_{12}H_4N_2$	176.0375
C ₈ H ₅ N ₃ O ₂	175.0382	$C_7 H_{18} N_3 O_2$	176.1400	$C_{13}H_{20}$	176.1566
C ₈ H ₇ N ₄ O	175.0621	$C_7H_2N_3O_3$	176.0096	C ₁₃ H ₄ O	176.0262
C ₉ H ₁₉ O ₃	175.1334	$C_{7}H_{20}N_{4}O$	176.1639	C ₁₃ H ₆ N	176.0501
C ₉ H ₃ O ₄	175.0031	$C_7H_4N_4O_2$	176.0335	$C_{14}H_{8}$	176.0626
C ₉ H ₂₁ NO ₂	175.1573	$C_8H_{16}O_4$	176.1049	177	
C ₉ H ₅ NO ₃	175.0269	$C_8H_{18}NO_3$	176.1287	$C_{6}H_{13}N_{2}O_{4}$	177.0876
C ₉ H ₇ N ₂ O ₂	175.0508	C ₈ H ₂ NO ₄	175.9983	C ₆ H ₁₅ N ₃ O ₃	177.1114
C ₉ H ₉ N ₃ O	175.0746	$C_8 H_{20} N_2 O_2$	176.1526	C ₆ H ₁₇ N ₄ O ₂	177.1353
C ₉ H ₁₁ N ₄	175.0985	$C_8H_2N_2O_3$	176.0222	C ₇ H ₁₅ NO ₄	177.1001
C ₁₀ H ₇ O ₃	175.0395	$C_8H_6N_3O_2$	176.0460	C ₇ H ₁₇ N ₂ O ₃	177.1240
$C_{10}H_9NO_2$	175.0634	C ₈ H ₈ N ₄ O	176.0699	C ₇ HN ₂ O ₄	176.9936
$C_{10}H_{11}N_{2}O$	175.0872	$C_{9}H_{20}O_{3}$	176.1413	$C_{7}H_{19}N_{3}O_{2}$	177.1478
$C_{10}H_{13}N_{3}$	175.1111	C ₉ H ₄ O ₄	176.0109	$C_7H_3N_3O_3$	177.0175
$C_{11}H_{11}O_2$	175.0759	C ₉ H ₆ NO ₃	176.0348	$C_7H_5N_4O_2$	177.0413
C ₁₁ H ₁₃ NO	175.0998	C ₉ H ₈ N ₂ O ₂	176.0586	$C_{8}H_{17}O_{4}$	177.1127
$C_{11}H_{15}N_{2}$	175.1236	$C_9H_{10}N_3O$	176.0825	$C_8H_{19}NO_3$	177.1365
$C_{11}HN_{3}$	175.0171	$C_{9}H_{12}N_{4}$	176.1063	C ₈ H ₃ NO ₄	177.0062
C ₁₂ H ₁₅ O	175.1123	$C_{10}H_8O_3$	176.0473	C ₈ H ₅ N ₂ O ₃	177.0300
C ₁₂ H ₁₇ N	175.1362	$C_{10}H_{10}NO_{2}$	176.0712	$C_8H_7N_3O_2$	177.0539
C ₁₂ HNO	175.0058	C ₁₀ H ₁₂ N,O	176.0950	C ₈ H ₉ N ₄ O	177.0777
C ₁ ,H ₃ N,	175.0297	$C_{10}H_{14}N_{3}$	176.1189	C _o H _o O ₄	177.0187
C ₁₃ H ₁₉	175.1488	$C_{10}N_{4}$	176.0124	C ₀ H ₇ NO ₃	177.0426
C ₁₃ H ₃ O	175.0184	C ₁₁ H ₁ ,O,	176.0837	C _o H _o N,O,	177.0664
C ₁₃ H ₂ N	175.0422	C ₁₁ N ₁₄ NO	176.1076	C ₀ H ₁₁ N ₂ O	177.0903
C,4H,	175.0548	$C_{11}H_{16}N_{1}$	176.1315	C ₀ H ₁ ,N ₄	177.1142
176		C, N,O	176.0011	C ₁₀ H ₀ O,	177.0552
C ₆ H ₁ ,N,O ₄	176.0797	C, H,N,	176.0249	C ₁₀ H ₁₁ NO,	177.0790
C ₆ H ₁₄ N ₃ O ₃	176.1036	$C_{12}H_{16}O$	176.1202	C ₁₀ H ₁₃ N,O	177.1029

	FM		FM	· · · · · · · · · · · · · · · · · · ·	FM
C ₁₀ H ₁₅ N ₃	177.1267	C ₉ H ₁₀ N,O,	178.0743	C,H,N,O,	179.0457
$C_{10}HN_{4}$	177.0202	C _o H ₁₂ N ₃ O	178.0981	C, H, N, O,	179.0695
$C_{11}H_{13}O_{2}$	177.0916	$C_{0}H_{14}N_{4}$	178.1220	C ₈ H ₁₁ N ₄ O	179.0934
C ₁₁ H ₁₅ NO	177.1154	$C_{10}H_{10}O_{3}$	178.0630	C ₀ H ₇ O ₄	179.0344
$C_{11}H_{17}N_{2}$	177.1393	$C_{10}H_{12}NO_{2}$	178.0868	C _o H _o NO,	179.0583
C ₁₁ HN,O	177.0089	$C_{10}H_{14}N_{2}O$	178.1107	C ₉ H ₁₁ N,O,	179.0821
C, H, N,	177.0328	$C_{10}H_{16}N_{3}$	1781346	C ₀ H ₁₃ N ₃ O	179.1060
C,,H,,O	177.1280	$C_{10}N_{3}O$	178.0042	C ₄ H ₁₅ N ₄	179.1298
С, НО,	176.9976	$C_{10}H_{10}N_{4}$	178.0280	C ₁₀ H ₁₁ O ₃	179.0708
$C_{12}H_{19}N$	177.1519	$C_{11}H_{14}O_2$	178.0994	$C_{10}H_{13}NO_2$	179.0947
C ₁ ,H,NO	177.0215	C ₁₁ H ₁₆ NO	178.1233	$C_{10}H_{15}N_{2}O$	179.1185
C_1, H_5N_2	177.0453	$C_{11}NO_2$	177.9929	$C_{10}H_{17}N_{3}$	179.1424
C ₁₃ H ₂₁	177.1644	$C_{11}H_{18}N_{2}$	178.1471	C ₁₀ HN ₃ O	179.0120
C ₁₃ H ₅ O	177.0340	C ₁₁ H,N,O	178.0167	C ₁₀ H ₃ N ₄	179.0359
C ₁₃ H ₇ N	177.0579	$C_{11}H_4N_3$	178.0406	$C_{11}H_{15}O_2$	179.1072
$C_{14}H_9$	177.0705	C ₁₂ H ₁₈ O	178.1358	C ₁₁ H ₁₇ NO	179.1311
178		C ₁ ,H ₂ O,	178.0054	$C_1 HNO_2$	179.0007
C ₆ H ₁₄ N ₂ O ₄	178.0954	$C_{12}H_{20}N$	178.1587	$C_{11}H_{19}N_2$	179.1549
C ₆ H ₁₆ N ₃ O ₃	178.1193	C ₁₂ H ₄ NO	178.0293	C ₁₁ H ₃ N ₂ O	179.0246
$C_6H_{18}N_4O_2$	178.1431	$C_{12}H_6N_2$	178.0532	$C_{11}H_5N_3$	179.0484
C ₇ H ₁₆ NO ₄	178.1080	C ₁₃ H ₂₂	178.1722	C ₁₂ H ₁₉ O	179.1436
$C_{7}H_{18}N_{2}O_{3}$	178.1318	C ₁₃ H ₆ O	178.0419	C ₁₂ H ₃ O ₂	179.0133
C ₇ H ₂ N ₂ O ₄	178.0014	C ₁₃ H ₈ N	178.0657	$C_{12}H_{21}N$	179.1675
C ₇ H ₄ N ₃ O ₃	178.0253	C ₁₄ H ₁₀	178.0783	C ₁₂ H ₅ NO	179.0371
C ₇ H ₆ N ₄ O ₂	178.0491	179		$C_{12}H_{7}N_{2}$	179.0610
C ₈ H ₁₈ O ₄	178.1205	$C_{6}H_{15}N_{2}O_{4}$	179.1032	C ₁₃ H ₂₃	179.1801
C ₈ H ₄ NO ₄	178.0140	C ₆ H ₁₇ N ₃ O ₃	179.1271	C ₁₃ H ₇ O	179.0497
C ₈ H ₆ N ₂ O ₃	178.0379	C ₇ H ₁₇ NO ₄	179.1158	C ₁₃ H ₉ N	179.0736
C ₈ H ₈ N ₃ O ₂	178.0617	$C_7H_3N_2O_4$	179.0093	C ₁₄ H ₁₁	179.0861
C ₈ H ₁₀ N ₄ O	178.0856	C ₇ H ₅ N ₃ O ₃	179.0331	180	
C ₉ H ₆ O ₄	178.0266	C ₇ H ₇ N ₄ O ₂	179.0570	$C_6H_{16}N_2O_4$	180.1111
C ₉ H ₈ NO ₃	178.0504	C ₈ H ₅ NO ₄	179.0218	C ₇ H ₄ N ₂ O ₄	180.0171

.

	FM		FM	<u> </u>	FM
СНИО	180 0410	СНО	180.0575	СНО	181 1593
C H N O	180.0410	С Н N	180.0973	C H O	181 0280
$C \downarrow NO$	180.0048	$C_{13} H_{10}$	180.0014	C H N	101.0209
$C \downarrow N O$	100.0297	C_{14}^{11}	100.0737	$C_{12}T_{23}T_{2$	101.1052
$C_8 H_8 N_2 O_3$	100.0333	0 ₁₅	180.0000	$C_{12}\Pi_7\Pi_0$	101.0320
$C_{8}\Pi_{10}N_{3}O_{2}$	100.0774		101 0040	$C_{12} \overline{D_9} \overline{N_2}$	101.0/0/
$C_8H_{12}N_4O$	180.1012	$C_7 H_5 N_2 O_4$	181.0249	$C_{13}H_{25}$	181.1957
$C_9H_8O_4$	180.0422	$C_7H_7N_3O_3$	181.0488	$C_{13}H_9O$	181.0653
$C_9H_{10}NO_3$	180.0661	$C_7H_9N_4O_2$	181.0726	$C_{13}H_{11}N$	181.0892
$C_{9}H_{12}N_{2}O_{2}$	180.0899	C ₈ H ₇ NO ₄	181.0375	$C_{14}H_{13}$	181.1018
C ₉ H ₁₄ N ₃ O	180.1138	C ₈ H ₉ N ₂ O ₃	181.0614	C ₁₅ H	181.0078
C ₉ H ₁₆ N ₄	180.1377	$C_{8}H_{11}N_{3}O_{2}$	181.0852	182	
C ₉ N ₄ O	180.0073	$C_8H_{13}N_4O$	181.1091	$C_7H_6N_2O_4$	182.0328
C ₁₀ H ₁₂ O ₃	180.0786	C ₉ H ₉ O ₄	181.0501	$C_7H_8N_3O_3$	182.0566
$C_{10}H_{14}NO_{2}$	180.1025	$C_9H_{11}NO_3$	181.0739	$C_7 H_{10} N_4 O_2$	182.0805
$C_{10}H_{16}N_{2}O$	180.1264	$C_{9}H_{13}N_{2}O_{2}$	181.0978	C ₈ H ₈ NO ₄	182.0453
$C_{10}N_{2}O_{2}$	179.9960	C ₉ H ₁₅ N ₃ O	181.1216	$C_8H_{10}N_2O_3$	182.0692
$C_{10}H_{18}N_{3}$	180.1502	$C_{9}H_{17}N_{4}$	181.1455	$C_{8}H_{1}N_{3}O_{2}$	182.0930
C ₁₀ H,N,O	180.0198	C₀HN₄O	181.0151	C ₈ H ₁₄ N ₄ O	182.1169
$C_{10}H_4N_4$	180.0437	C ₁₀ H ₁₃ O ₃	181.0863	$C_{0}H_{10}O_{4}$	182.0579
$C_{11}H_{16}O_{7}$	180.1151	C ₁₀ H ₁₅ NO,	181.1103	C ₀ H ₁ ,NO ₃	182.0817
$C_{11}O_{3}$	179.9847	C ₁₀ H ₁₇ N ₂ O	181.1342	$C_{0}H_{\mu}N_{2}O_{2}$	182.1056
	180.1389	C ₁₀ HN,O,	181.0038	C ₀ H ₁₆ N ₂ O	182.1295
C,H,NO,	180.0085	$C_{10}H_{10}N_{2}$	181.1580	$C_{0}N_{2}O_{1}$	181.9991
C ₁₁ H ₂₀ N,	180.1628	C ₁₀ H ₁ N ₂ O	181.0277	C ₀ H ₁₀ N ₄	182.1533
C ₁ H ₄ N ₂ O	180.0324	C ₁₀ H ₂ N ₄	181.0515	$C_{0}H_{1}N_{1}O$	182.0229
C, H, N,	180.0563	C.,H.,O,	181,1229	C.,H.,O.	182.0943
C.H.O	180.1515	С.,НО,	180.9925	CHNO.	182.1182
C.H.O.	180.0211	CHNO	181,1467	CNO.	181,9878
CHN	180 1753	C H NO	181 0164	C N N O	182 1420
CH.NO	180,0449	C H N	181 1706	C H N O	182 0116
C H N	180.0688	C H N O	181.0402	C H N	182 1659
-12^{-18}	180 1870	C H N	181 0641	$\sim_{10^{-1}20^{+1}3}$	182 0355
-13-24		~11 7 3	101.0041	~10 [*] ⁴ ¹ ³	102.0555

۰.

·····	FM		FM		FM
$C_{10}H_6N_4$	182.0594	C ₀ H ₁₀ N ₄	183.1611	C ₈ H ₁₀ NO ₄	184.0610
$C_{11}H_{18}O_{7}$	182.1307	C ₉ H ₃ N₄O	183.0308	C ₈ H ₁₂ N ₂ O ₃	184.0848
$C_1H_2O_3$	182.0003	C ₁₀ H ₁₅ O ₃	183.1021	$C_8H_{14}N_3O_2$	184.1087
C ₁₁ H ₂₀ NO	182.1546	C ₁₀ H ₁₇ NO,	183.1260	C ₈ H ₁₆ N ₄ O	184.1325
$C_{11}H_4NO_2$	182.0242	C ₁₀ HNO ₃	182.9956	$C_8 N_4 O_2$	184.0022
C ₁₁ H ₂₂ N,	182.1784	C ₁₀ H ₁₉ N,O	183.1498	C ₉ H ₁₂ O ₄	184.0735
$C_{11}H_6N_2O$	182.0480	C ₁₀ H ₃ N ₂ O ₂	183.0195	C ₉ H ₁₄ NO ₃	184.0974
$C_{11}H_8N_3$	182.0719	$C_{10}H_{21}N_{3}$	183.1737	C ₉ H ₁₆ N ₂ O ₂	184.1213
$C_{12}H_{22}O$	182.1671	C ₁₀ H ₅ N ₃ O	183.0433	$C_9 N_2 O_3$	184.9909
$C_{12}H_6O_2$	182.0368	$C_{10}H_{7}N_{4}$	183.0672	$C_9H_{18}N_3O$	184.1451
$C_{12}H_{24}N$	182.1910	$C_{11}H_{19}O_{2}$	183.1385	C ₉ H ₂ N ₃ O ₂	184.0147
C ₁₂ H ₈ NO	182.0606	C ₁₁ H ₃ O ₃	183.0082	$C_{9}H_{20}N_{4}$	184.1690
$C_{12}H_{10}N_{2}$	182.0845	C ₁₁ H ₂₁ NO	183.1624	C ₉ H ₄ N ₄ O	184.0386
C ₁₃ H ₂₆	182.2036	C ₁₁ H ₅ NO ₂	183.0320	C ₁₀ H ₁₆ O ₃	184.1100
C ₁₃ H ₁₀ O	182.0732	$C_{11}H_{23}N_{2}$	183.1863	C ₁₀ O ₄	183.9796
$C_{13}H_{12}N$	182.0970	C ₁₁ H ₇ N ₂ O	183.0559	$C_{10}H_{18}NO_{2}$	184.1338
C ₁₄ H ₁₄	182.1096	C ₁₁ H ₉ N ₃	183.0798	C ₁₀ H ₂ NO ₃	184.0034
C ₁₄ N	182.0031	C ₁₂ H ₂₃ O	183.1750	$C_{10}H_{20}N_{2}O$	184.1577
C ₁₅ H ₂	182.0157	$C_{12}H_7O_2$	183.0446	$C_{10}H_4N_2O_2$	184.0273
183		$C_{12}H_{25}N$	183.1988	$C_{10}H_{22}N_{3}$	184.1815
C ₇ H ₇ N ₂ O ₄	183.0406	C ₁₂ H ₉ NO	183.0684	$C_{10}H_6N_3O$	184.0511
C ₇ H ₉ N ₃ O ₃	183.0644	$C_{12}H_{11}N_{2}$	183.0923	$C_{10}H_{8}N_{4}$	184.0750
$C_{7}H_{11}N_{4}O_{2}$	183.0883	C ₁₃ H ₂₇	183.2114	$C_{11}H_{20}O_2$	184.1464
C ₈ H ₉ NO ₄	183.0532	C ₁₃ H ₁₁ O	183.0810	$C_{11}H_4O_3$	184.0160
$C_{8}H_{11}N_{2}O_{3}$	183.0770	$C_{13}H_{13}N$	183.1049	$C_{11}H_{22}NO$	184.1702
$C_{8}H_{13}N_{3}O_{2}$	183.1009	$C_{14}H_{15}$	183.1174	$C_{11}H_6NO_2$	184.0399
$C_8H_{15}N_4O$	183.1247	C ₁₄ HN	183.0109	$C_{11}H_{24}N_2$	184.1941
C ₉ H ₁₁ O ₄	183.0657	C ₁₅ H ₃	183.0235	$C_{11}H_8N_2O$	184.0637
C ₉ H ₁₃ NO ₃	183.0896	184		$C_{11}H_{10}N_3$	184.0876
$C_{9}H_{15}N_{2}O_{2}$	183.1134	$C_7H_8N_2O_4$	184.0484	$C_{12}H_{24}O$	184.1828
C ₉ H ₁₇ N ₃ O	183.1373	$C_{7}H_{10}N_{3}O_{3}$	184.0723	$C_{12}H_8O_2$	184.0524
C ₉ HN ₃ O ₂	183.0069	$C_7 H_{12} N_4 O_2$	184.0961	$C_{12}H_{26}N$	184.2067

	FM		FM		FM
C ₁ ,H ₁₀ NO	184.0763	C ₁₀ HO ₄	184.9874	C ₈ H ₂ N ₄ O ₂	186.0178
C ₁ ,H ₁ ,N,	184.1001	$C_{10}H_{23}N_{3}$	185.1894	$C_9H_{14}O_4$	186.0892
$C_{13}H_{28}$	184.2192	$C_{10}H_{7}N_{3}O$	185.0590	$C_{9}H_{16}NO_{3}$	186.1131
C ₁₃ H ₁ ,O	184.0888	$C_{10}H_9N_4$	185.0829	C ₉ NO ₄	185.9827
$C_{13}H_{14}N$	184.1127	C ₁₁ H ₂₁ O ₂	185.1542	$C_{9}H_{18}N_{2}O_{2}$	186.1369
$C_{13}N_2$	184.0062	$C_1H_5O_3$	185.0238	$C_9H_2N_2O_3$	186.0065
$C_{14}H_{16}$	184.1253	C ₁₁ H ₂₃ NO	185.1781	$C_{9}H_{20}N_{3}O$	186.1608
C ₁₄ O	183.9949	C ₁₁ H ₇ NO ₂	185.0477	$C_9H_4N_3O_5$	186.0304
$C_{14}H,N$	184.0187	$C_{11}H_{25}N_{2}$	185.2019	$C_{9}H_{22}N_{4}$	186.1846
$C_{15}H_4$	184.0313	$C_{11}H_9N_2O$	185.0715	C ₉ H ₆ N ₄ O	186.0542
185		$C_{11}H_{11}N_{3}$	185.0954	$C_{10}H_{18}O_{3}$	186.1256
C ₇ H ₉ N ₂ O ₄	185.0563	$C_{12}H_{25}O$	185.1906	$C_{10}H_{2}O_{4}$	185.9953
$C_7H_{11}N_3O_3$	185.0801	$C_{12}H_{9}O_{2}$	185.0603	$C_{10}H_{10}N_{4}$	186.0907
$C_7 H_{13} N_4 O_2$	185.1040	$C_{12}H_{27}N$	185.2145	$C_{10}H_{20}NO_{2}$	186.1495
C ₈ H ₁₁ NO ₄	185.0688	C ₁₂ H ₁₁ NO	185.0841	$C_{10}H_4NO_3$	186.0191
$C_8H_{13}N_2O_3$	185.0927	$C_{12}H_{13}N_{2}$	185.1080	$C_{10}H_{22}N_{2}O$	186.1733
$C_{8}H_{15}N_{3}O_{2}$	185.1165	C ₁₃ H ₁₃ O	185.0967	$C_{10}H_{6}N_{2}O_{2}$	186.0429
C ₈ H ₁₇ N ₄ O	185.1404	C ₁₃ H ₁₅ N	185.1205	$C_{10}H_{24}N_{3}$	186.1972
C ₈ HN ₄ O ₂	185.0100	$C_{13}HN_2$	185.0140	$C_{10}H_8N_3O$	186.0668
$C_{9}H_{21}N_{4}$	185.1768	$C_{14}H_{17}$	185.1331	$C_{11}H_{22}O_{2}$	186.1620
C ₉ H ₁₉ N ₃ O	185.1529	C ₁₄ HO	185.0027	$C_{11}H_6O_3$	186.0317
C ₉ H ₅ N ₄ O	185.0464	$C_{14}H_3N$	185.0266	C ₁₁ H ₂₄ NO	186.1859
C ₉ H ₃ N ₃ O ₂	185.0226	C ₁₅ H ₅	185.0391	C ₁₁ H ₈ NO ₂	186.0555
C ₉ H ₁₃ O ₄	185.0814	186		$C_{11}H_{26}N_{2}$	186.2098
C ₉ H ₁₅ NO ₃	185.1052	$C_{7}H_{10}N_{2}O_{4}$	186.0641	$C_{11}H_{10}N_{2}O$	186.0794
$C_{9}H_{17}N_{2}O_{2}$	185.1291	C ₇ H ₁₂ N ₃ O ₃	186.0879	$C_{11}H_{12}N_{3}$	186.1032
C ₉ HN ₂ O ₃	184.9987	$C_7H_{14}N_4O_2$	186.1118	C ₁₂ H ₂₆ O	186.1985
C ₁₀ H ₁₉ NO ₂	185.1416	$C_8H_{12}NO_4$	186.0766	C ₁₂ H ₁₀ O ₂	186.0681
$C_{10}H_3NO_3$	185.0113	$C_{8}H_{14}N_{2}O_{3}$	186.1005	C ₁₂ H ₁₂ NO.	186.0919
C ₁₀ H ₂₁ N ₂ O	185.1655	$C_{8}H_{16}N_{3}O_{2}$	186.1244	$C_{12}H_{14}N_{2}$	186.1158
C ₁₀ H ₅ N ₂ O ₂	185.0351	C ₈ N ₃ O ₃	185.9940	C ₁₂ N ₃	186.0093
C ₁₀ H ₁₇ O ₃	185.1178	$C_8H_{18}N_4O$	186.1482	C ₁₃ H ₁₄ O	186.1045

	FM		FM	<u></u>	FM
$\overline{C_{13}H_{16}N}$	186.1284	C ₁₀ H, N,	187.2050	C ₀ H ₁₆ O ₁	188.1049
C ₁₃ NO	185.9980	$C_{10}H_{0}N_{3}O$	187.0746	$C_{0}H_{18}NO_{3}$	188.1287
C ₁₃ H,N,	186.0218	$C_{10}H_{11}N_{4}$	187.0985	C ₀ H,NO ₄	187.9983
$C_{14}H_{18}$	186.1409	$C_{11}H_{11}N_{2}O$	187.0872	C ₀ H ₂₀ N,O,	188.1526
C ₁₄ H,O	186.0106	$C_{11}H_{13}N_3$	187.1111	C ₉ H ₄ N,O ₃	188.0222
$C_{14}H_4N$	186.0344	C ₁₁ H ₂₃ O ₂	187.1699	C ₀ H,,,N,O	188.1764
C ₁₅ H ₆	186.0470	$C_{11}H_7O_3$	187.0395	$C_{9}H_{6}N_{3}O_{2}$	188.0460
187		$C_{11}H_{25}NO$	187.1937	$C_9H_{24}N_4$	188.2003
C ₇ H ₁₁ N ₂ O ₄	187.0719	$C_{11}H_9NO_2$	187.0634	C ₉ H ₈ N ₄ O	188.0669
C ₇ H ₁₃ N ₃ O ₃	187.0958	C ₁₂ H ₁₁ O ₂	187.0759	$C_{10}H_{20}O_{3}$	188.1413
$C_{7}H_{15}N_{4}O_{2}$	187.1196	C ₁₂ H ₁₃ NO	187.0998	$C_{10}H_4O_4$	188.0109
C ₈ H ₁₃ NO ₄	187.0845	C ₁₂ H ₁₅ N ₂	187.1236	$C_{10}H_{22}NO_{2}$	188.1651
$C_8H_{15}N_2O_3$	187.1083	C ₁₂ HN ₃	187.0171	$C_{10}H_6NO_3$	188.0348
$C_{8}H_{17}N_{3}O_{2}$	187.1322	C ₁₃ H ₁₅ O	187.1123	$C_{10}H_{24}N_{2}O$	188.1890
C ₈ HN ₃ O ₃	187.0018	C ₁₃ H ₁₇ N	187.1362	$C_{10}H_{8}N_{2}O_{2}$	188.0586
$C_{8}H_{19}N_{4}O$	187.1560	C ₁₃ HNO	187.0058	C ₁₀ H ₁₀ N ₃ O	188.0825
$C_8H_3N_4O_2$	187.0257	$C_{13}H_3N_2$	187.0297	$C_{10}H_{12}N_4$	188.1063
C ₉ H ₁₅ O ₄	187.0970	C ₁₄ H ₁₉	187.1488	$C_{11}H_{24}O_{2}$	188.1777
C ₉ H ₁₇ NO ₃	187.1209	C ₁₄ H ₃ O	187.0184	$C_{11}H_8O_3$	188.0473
C ₉ HNO ₄	186.9905	C ₁₄ H ₅ N	187.0422	$C_{11}H_{10}NO_2$	188.0712
$C_{9}H_{19}N_{2}O_{2}$	187.1447	C ₁₅ H ₇	187.0548	$C_{11}H_{12}N_{2}O$	188.0950
$C_9H_3N_2O_3$	187.0144	188		$C_{11}H_{14}N_{3}$	188.1189
$C_9H_{21}N_3O$	187.1686	C ₇ H ₁₂ N ₂ O ₄	188.0797	$C_{11}N_4$	188.0124
$C_9H_5N_3O_2$	187.0382	$C_{7}H_{14}N_{3}O_{3}$	188.1036	$C_{12}H_{12}O_{2}$	188.0837
$C_{9}H_{23}N_{4}$	187.1925	$C_7H_{16}N_4O_2$	188.1275	C ₁₂ H ₁₄ NO	188.1076
C ₀ H ₇ N ₄ O	187.0621	$C_8H_{14}NO_4$	188.0923	$C_{12}H_{16}N_{2}$	188.1315
$C_{10}H_{19}O_{3}$	187.1334	$C_8H_{16}N_2O_3$	188.1162	$C_{12}N_2O$	188.0011
$C_{10}H_{3}O_{4}$	187.0031	$C_8N_2O_4$	187.9858	$C_{12}H_2N_3$	188.0249
$C_{10}H_{21}NO_{2}$	187.1573	$C_8H_{18}N_3O_2$	188.1400	C ₁₃ H ₁₆ O	188.1202
C ₁₀ H ₅ NO ₃	187.0269	$C_8H_2N_3O_3$	188.0096	$C_{13}O_{2}$	187.9898
C ₁₀ H ₂₃ N ₂ O	187.1811	$C_{8}H_{20}N_{2}O$	188.1639	$C_{13}H_{18}N$	188,1440
$C_{10}H_{7}N_{2}O_{2}$	187.0508	C ₈ H ₄ N ₄ O ₂	188.0335	C ₁₃ H ₂ NO	188.0136

	FM		FM		FM
$C_{13}H_4N_2$	188.0375	$C_{11}H_{11}NO_2$	189.0790	C ₉ H ₂₂ N ₂ O ₂	190.1682
$C_{14}H_{20}$	188.1566	$C_{11}H_{13}N_{2}O$	189.1029	$C_9H_6N_2O_3$	190.0379
C ₁₄ H ₄ O	188.0262	$C_{11}H_{15}N_{3}$	189.1267	$C_9H_8N_3O_2$	190.0617
C ₁ H ₆ N	188.0501	$C_1 HN_4$	189.0202	$C_{9}H_{10}N_{4}O$	190.0856
C ₁₅ H	188.0626	C ₁ ,H ₁ ,O,	189.0916	$C_{10}H_{22}O_{3}$	190.1569
189		C,,H,,NO	189.1154	$C_{10}H_6O_4$	190.0266
C,H,N,O,	189.0876	$C_{12}H_{17}N_{2}$	189.1393	C ₁₀ H ₈ NO ₃	190.0504
$C_{1}H_{1}N_{2}O_{2}$	189.1114	C ₁₂ HN ₂ O	189.0089	$C_{10}H_{10}N_2O_2$	190.0743
$C_{1}H_{1}N_{1}O_{2}$	189.1353	C1,H,N,	189.0328	C ₁₀ H ₁₂ N ₃ O	190.0981
C _a H _a NO ₄	189.1001	C, H, O	189.1280	$C_{10}H_{14}N_{4}$	190.1220
C,H,N,O,	189.1240	C, HO,	188.9976	$C_{11}H_{10}O_{3}$	190.0630
C _a HN _a O _a	188.9936	C, H, N	189.1519	$C_{11}H_{12}NO_2$	190.0868
C,H,N,O,	189.1478	C ₁₃ H ₃ NO	189.0215	$C_{11}H_{14}N_2O$	190.1107
C,H,N,O,	189.0175	C ₁₂ H ₂ N ₂	189.0453	$C_{11}H_{16}N_{3}$	190.1346
C.H.,N.O	189.1717	C ₁₄ H ₂₁	189.1644	$C_{11}N_3O$	190.0042
$C_H_N_O$	189.0413	C ₁₄ H ₂ O	189.0340	$C_{11}H_2N_4$	190.0280
C ₀ H ₁₇ O ₄	189.1127	$C_{14}H_7N$	189.0579	$C_{12}H_{14}O_2$	190.0994
C ₀ H ₁₀ NO ₃	189.1365	C ₁ H ₉	189.0705	$C_{12}H_{16}NO$	190.1233
C ₉ H ₃ NO₄	189.0062	190		C H N	109.9929
C ₀ H, N,O,	189.1604	$C_{7}H_{14}N_{2}O_{4}$	190.0954	C H N O	190.0167
C ₉ H ₅ N ₅ O ₃	189.0300	$C_7 H_{16} N_3 O_3$	190.1193	C H N	190.0406
C ₉ H ₂₃ N ₃ O	189.1842	$C_{7}H_{18}N_{4}O_{2}$	190.1431	CHO	190.1358
$C_9H_7N_3O_2$	189.0539	C ₈ H ₁₆ NO ₄	190.1080	C, H,O,	190.0054
C ₉ H ₉ N₄O	189.0777	$C_{8}H_{18}N_{2}O_{3}$	190.1318	$C_{12}H_{20}N$	190.1597
$C_{10}H_{21}O_{3}$	189.1491	$C_8H_2N_2O_4$	190.0014	C ₁₃ H ₄ NO	190.0293
$C_{10}H_5O_4$	189.0187	$C_{8}H_{20}N_{3}O_{2}$	190.1557	$C_{13}H_{6}N_{7}$	190.0532
$C_{10}H_{23}NO_{2}$	189.1730	C ₈ H ₄ N ₃ O ₃	190.0253	C ₁₄ H ₂₂	190.1722
$C_{10}H_7NO_3$	189.0426	$C_8H_{22}N_4O$	190.1795	C ₁₄ H ₆ O	190.0419
$C_{10}H_{9}N_{2}O_{2}$	189.0664	$C_8H_6N_4O_2$	190.0491	C ₁₄ H ₈ N	190.0657
C ₁₀ H ₁₁ N ₃ O	189.0903	$C_{9}H_{18}O_{4}$	190.1205	C ₁₅ H ₁₀	190.0783
C ₁₀ H ₁₃ N ₄	189.1142	$C_{9}H_{20}N_{3}$	190.1444	191	
C ₁₁ H ₉ O ₃	189.0552	C ₉ H ₄ NO ₄	190.0140	$C_7 H_{15} N_2 O_4$	191.1032

	FM	······································	FM		FM
C.H. N.O.	191.1271	С.,Н.О.	191.0133	CHN.	192.1502
C_H_N_O	191.1509	CHN	191.1675	CH.N.O	192.0198
$C_{a}H_{a}NO_{a}$	191.1158	C. H.NO	191.0371	C.,H.N.	192.0437
$C_{a}H_{a}N_{2}O_{2}$	191.1396	C.H.N.	191.0610	C, H, O,	192.1151
C,H,N,O	191.0093	$C_{14}H_{22}$	191.1801	$C_{12}O_{2}$	191.9847
$C_{R}H_{1}N_{2}O_{2}$	191.1635	$C_{14}H_{7}O$	191.0497	$C_{12}H_{18}NO$	192.1389
C ₈ H ₅ N ₃ O ₃	191.0331	C ₁₄ H ₉ N	191.0736	C ₁ ,H,NO,	192.0085
C ₈ H ₇ N ₄ O ₂	191.0570	C ₁₅ H ₁₁	191.0861	$C_{1,H_{20}}N_{2}$	192.1628
C ₉ H ₁₉ O ₄	191.1284	192		C ₁ ,H ₄ N,O	192.0324
$C_9H_{21}NO_3$	191.1522	$C_{7}H_{16}N_{2}O_{4}$	192.1111	$C_{12}H_6N_3$	192.0563
C ₉ H ₅ NO ₄	191.0218	$C_{7}H_{18}N_{3}O_{3}$	192.1349	$C_{13}H_{20}O$	192.1515
$C_9H_7N_2O_3$	191.0457	$C_{7}H_{20}N_{4}O_{2}$	192.1588	$C_{13}H_4O_2$	192.0211
C ₉ H ₉ N ₃ O ₂	191.0695	C ₈ H ₁₈ NO ₄	192.1236	$C_{13}H_{22}N$	192.1753
C ₉ H ₁₁ N ₄ O	191.0934	$C_{8}H_{20}N_{2}O_{3}$	192.1475	C ₁₃ H ₆ NO	192.0449
$C_{10}H_7O_4$	191.0344	$C_8H_4N_2O_4$	192.0171	$C_{13}H_8N_2$	192.0688
$C_{10}H_9NO_3$	191.0583	C ₈ H ₆ N ₃ O ₃	192.0410	$C_{14}H_{24}$	192.1879
$C_{10}H_{11}N_{2}O_{2}$	191.0821	C ₈ H ₈ N ₄ O ₂	192.0648	C ₁₄ H ₈ O	192.0575
C ₁₀ H ₁₃ N ₃ O	191.1060	$C_{9}H_{20}O_{4}$	192.1362	$C_{14}H_{10}N$	192.0814
$C_{10}H_{15}N_{4}$	191.1298	C ₉ H ₆ NO ₄	192.0297	C ₁₅ H ₁₂	192.0939
C ₁₁ H ₁₁ O ₃	191.0708	C ₉ H ₈ N ₂ O ₃	192.0535	C ₁₆	192.0000
$C_{11}H_{13}NO_{2}$	191.0947	C ₉ H ₁₀ N ₃ O ₂	192.0774	193	
$C_{11}H_{15}N_{2}O$	191.1185	$C_9H_{12}N_4O$	192.1012	C ₇ H ₁₇ N ₂ O ₄	193.1189
C ₁₁ H ₁₇ N ₃	191.1424	C ₁₀ H ₈ O ₄	192.0422	C ₇ H ₁₉ N ₃ O ₃	193.1427
C ₁₁ HN₃O	191.0120	C ₁₀ H ₁₀ NO ₃	192.0661	C ₈ H ₁₉ NO ₄	193.1315
C ₁₁ H ₃ N ₄	191.0359	C ₁₀ H ₁₂ N ₂ O ₂	192.0899	C ₈ H ₅ N ₂ O ₄	193.0249
C ₁₂ H ₁₅ O ₂	191.1072	C ₁₀ H ₁₄ N ₃ O	192.1138	C ₈ H ₇ N ₃ O ₃	193.0488
C ₁₂ H ₁₇ NO	191.1311	C ₁₀ H ₁₆ N ₄	192.1377	C ₈ H ₉ N ₄ O ₂	193.0726
C ₁₂ HNO ₂	191.0007	C ₁₀ N ₄ O	192.0073	C ₉ H ₇ NO ₄	193.0375
$C_{12}H_{19}N_2$	191.1549	$C_{11}H_{12}O_{3}$	192.0786	C ₉ H ₉ N ₂ O ₃	193.0614
$C_{12}H_{3}N_{2}O$	191.0246	$C_{11}H_{14}NO_2$	192.1025	$C_9H_{11}N_3O_2$	193.0852
$C_{12}H_{5}N_{3}$	191.0484	$C_{11}H_{16}N_{2}O$	192.1264	C ₉ H ₁₃ N ₄ O	193.1091
C ₁₃ H ₁₉ O	191.1436	$C_{11}N_{2}O_{2}$	191.9960	C ₉ H ₇ N ₃ O	193.0590

٤

٠.

	FM		FM		FM
$\overline{C_{10}H_{9}O_{4}}$	193.0501	C ₈ H ₆ N ₂ O ₄	194.0328	C ₁₃ H ₈ NO	194.0606
$C_{10}H_{11}NO_3$	193.0739	$C_8H_8N_3O_3$	194.0566	$C_{13}H_{10}N_{2}$	194.0845
C ₁₀ H ₁₃ N ₂ O ₂	193.0978	$C_{8}H_{10}N_{4}O_{2}$	194.0805	$C_{14}H_{26}$	194.1036
C ₁₀ H ₁₅ N ₃ O	193.1216	C ₉ H ₈ NO ₄	194.0453	C ₁₄ H ₁₀ O	194.0732
$C_{10}H_{17}N_{4}$	193.1455	$C_{9}H_{10}N_{2}O_{3}$	194.0692	$C_{14}H_{12}N$	194.0970
C ₁₀ HN₄O	193.0151	$C_{9}H_{12}N_{3}O_{2}$	194.0930	C ₁₅ H ₁₄	194.1096
C ₁₁ H ₁₃ O ₃	193.0865	C ₉ H ₁₄ N ₄ O	194.1169	C ₁₅ N	194.0031
$C_1H_15NO_2$	193.1103	C ₁₀ H ₁₀ O ₄	194.0579	$C_{16}H_2$	194.0157
$C_{11}H_{17}N_{2}O$	193.1342	$C_{10}H_{12}NO_{3}$	194.0817	195	
$C_{11}HN_{2}O_{2}$	193.0038	$C_{10}H_{14}N_{2}O_{2}$	194.1056	C ₈ H ₇ N ₂ O ₄	195.0406
$C_{11}H_{19}N_3$	193.1580	$C_{10}H_{16}N_{3}O$	194.1295	$C_8H_9N_3O_3$	195.0644
C ₁₁ H ₃ N ₃ O	193.0277	$C_{10}N_{3}O_{2}$	193.9991	$C_9H_{11}N_4O_2$	195.0883
$C_{11}H_5N_4$	193.0515	$C_{10}H_{18}N_{4}$	194.1533	C ₉ H ₉ NO ₄	195.0532
$C_{12}H_{17}O_{2}$	193.1229	C ₁₀ H ₂ N ₄ O	194.0229	C ₉ H ₁₁ N ₂ O ₃	195.0770
C ₁₂ HO ₃	192.9925	$C_{11}H_{14}O_{3}$	194.0943	$C_9H_{13}N_3O_2$	195.1009
C ₁₂ H ₁₉ NO	193.1467	$C_{11}H_{16}NO_2$	194.1182	C ₉ H ₁₅ N ₄ O	195.1247
$C_{12}H_3NO_2$	193.0164	C ₁₁ NO ₃	193.9878	C ₁₀ H ₁₁ O ₄	195.0657
$C_{12}H_{21}N_{2}$	193.1706	$C_{11}H_{18}N_{2}O$	194.1420	C ₁₀ H ₁₃ NO ₃	195.0896
C ₁₂ H ₅ N ₂ O	193.0402	$C_{11}H_2N_2O_2$	194.0116	C ₁₀ H ₁₅ N ₂ O ₂	195.1134
$C_{12}H_{7}N_{3}$	193.0641	$C_{11}H_{20}N_{3}$	194.1659	C ₁₀ H ₁₇ N ₃ O	195.1373
C ₁₃ H ₂₁ O	193.1593	C ₁₁ H ₄ N ₃ O	194.0355	C ₁₀ HN ₃ O ₂	195.0069
C ₁₃ H ₅ O ₂	193.0289	$C_{11}H_6N_4$	194.0594	$C_{10}H_{19}N_4$	195.1611
C ₁₃ H ₂₃ N	193.1832	$C_{12}H_{18}O_{2}$	194.1307	$C_{10}H_3N_4O$	195.0308
C ₁₃ H ₇ NO	193.0528	C ₁₂ H ₂ O ₃	194.0003	C ₁₁ H ₁₅ O ₃	195.1021
$C_{13}H_{9}N_{2}$	193.0767	C ₁₂ H ₂₀ NO	194.1546	$C_{11}H_{17}NO_2$	195.1260
C ₁₄ H ₂₅	193.1957	$C_{12}H_4NO_2$	194.0242	C ₁₁ HNO ₃	194.9956
C ₁₄ H ₉ O	193.0653	$C_{12}H_{22}N_2$	194.1784	$C_{11}H_{19}N_{2}O$	195.1498
C ₁₄ H ₁₁ N	193.0892	$C_{12}H_6N_2O$	194.0480	$C_{11}H_{3}N_{2}O_{2}$	195.0195
C ₁₅ H ₁₃	193.1018	$C_{12}H_8N_3$	194.0719	$C_{11}H_{21}N_{3}$	195.1737
C ₁₆ H	193.0078	C ₁₃ H ₂₂ O	194.1671	C ₁₁ H ₅ N ₃ O	195.0433
194		$C_{13}H_{6}O_{2}$	194.0368	$C_{11}H_7N_4$	195.0672
C ₇ H ₁₈ N ₂ O ₄	194.1267	$C_{13}H_{24}N$	194.1910	$C_{12}H_{19}O_{2}$	195.1385

	FM		FM		FM
C ₁ ,H ₃ O ₃	195.0082	$C_{10}H_{20}N_{4}$	196.1690	C ₈ H ₁₁ N ₃ O ₃	197.0801
C ₁ ,H,NO	195.1624	C ₁₀ H ₄ N ₄ O	196.0386	$C_{8}H_{13}N_{4}O_{2}$	197.1040
C_1, H_2, NO_2	195.0320	$C_{11}H_{16}O_{3}$	196.1100	C ₉ H ₁₁ NO ₄	197.0688
C,,H,,N,	195.1863	C ₁₁ O ₄	195.9796	C ₉ H ₁₃ N ₂ O ₃	197.0927
C ₁ ,H,N,O	195.0559	$C_{11}H_{18}NO_2$	196.1338	$C_{9}H_{15}N_{3}O_{2}$	197.1165
$C_{12}H_{9}N_{3}$	195.0798	$C_{11}H_2NO_3$	196.0034	C ₉ H ₁₇ N ₄ O	197.1404
C ₁₃ H ₂₃ O	195.1750	$C_{11}H_{20}N_2O$	196.1577	$C_9HN_4O_2$	197.0100
C, H,O,	195.0446	$C_{11}H_4N_2O_2$	196.0273	$C_{10}H_{13}O_{4}$	197.0814
C13H,5N	195.1988	$C_{11}H_{22}N_{3}$	196.1815	C ₁₀ H ₁₅ NO ₃	197.1052
C ₁₃ H ₉ NO	195.0684	$C_{11}H_6N_3O$	196.0511	$C_{10}H_{17}N_2O_2$	197.1291
C,,H,,N,	195.0923	$C_{11}H_8N_4$	196.0750	$C_{10}HN_{2}O_{3}$	196.9987
C ₁₄ H ₂₇	195.2114	$C_{12}H_{20}O_{2}$	196.1464	C ₁₀ H ₁₉ N ₃ O	197.1529
C ₁₄ H ₁₁ O	195.0810	$C_{12}H_4O_3$	196.0160	$C_{10}H_{3}N_{3}O_{2}$	197.0226
$C_{14}H_{13}N$	195.1049	$C_{12}H_{22}NO$	196.1702	$C_{10}H_{21}N_{4}$	197.1768
C ₁₅ H ₁₅	195.1174	$C_{12}H_6NO_2$	196.0399	C ₁₀ H ₅ N ₄ O	197.0464
C ₁₅ HN	195.0109	$C_{12}H_{24}N_2$	190.1941	$C_{11}H_{17}O_{3}$	197.1178
C ₁₆ H ₃	195.0235	C H N	190.0057	C ₁₁ HO ₄	196.9874
196		C H O	196.1878	C ₁₁ H ₁₉ NO ₂	197.1416
C ₈ H ₈ N ₂ O ₄	196.0484	CHO	196 0524	C ₁₁ H ₃ NO ₃	197.0113
C ₈ H ₁₀ N ₃ O ₃	196.0723	$C_{13} H_{8} O_{2}$	196.2067	$C_{11}H_{21}N_{2}O$	197.1655
$C_{8}H_{12}N_{4}O_{2}$	196.0961	CHNO	196.0763	$C_{11}H_5N_2O_2$	197.0351
C ₉ H ₁₀ NO ₄	196.0610	C.,H.,N.	196.1001	C ₁₁ H ₂₃ N ₃	197.1894
$C_{9}H_{12}N_{2}O_{3}$	196.0848	$C_{14}H_{28}$	196.2192	C ₁₁ H ₇ N ₃ O	197.0590
$C_9H_{14}N_3O_2$	196.1087	$C_{14}H_{12}O$	196.0888	$C_{11}H_{9}N_{4}$	197.0829
C ₉ H ₁₆ N ₄ O	196.1325	$C_{14}H_{14}N$	196.1127	$C_{12}H_{21}O_2$	197.1542
$C_9N_4O_2$	196.0022	$C_{14}N_2$	196.0062	C ₁₂ H ₅ O ₃	197.0238
C ₁₀ H ₁₂ O ₄	196.0735	C ₁₅ H ₁₆	196.1253	C ₁₂ H ₂₃ NO	197.1781
$C_{10}H_{14}NO_{3}$	196.0974	C ₁₅ O	195.9949	C ₁₂ H ₇ NO ₂	197.0477
C ₁₀ H ₁₆ N ₂ O ₂	196.1213	$C_{15}H_2N$	196.0187	$C_{12}H_{25}N_{2}$	197.2019
C ₁₀ N ₂ O ₃	195.9909	$C_{16}H_4$	196.0313	$C_{12}H_9N_2O$	197.0715
C ₁₀ H ₁₈ N ₃ O	196.1451	197		C ₁₂ H ₁₁ N ₃	197.0954
C ₁₀ H ₂ N ₃ O ₂	196.0147	$C_8H_9N_2O_4$	197.0563	C ₁₃ H ₂₅ O	197.1906

	FM		FM		FM
$\overline{C_{1,2}H_{0}O_{2}}$	197.0603	C ₁₁ H ₂ O ₄	197.9953	C ₈ H ₁₃ N ₃ O ₃	199.0958
C ₁₃ H ₂₇ N	197.2145	$C_{11}H_{20}NO_{2}$	198.1495	$C_{8}H_{15}N_{4}O_{2}$	199.1196
C ₁₃ H ₁₁ NO	197.0841	C ₁₁ H ₄ NO ₃	198.0191	C ₉ H ₁₃ NO ₄	199.0845
C ₁₃ H ₁₃ N,	197.1080	C ₁₁ H,,N,O	198.1733	$C_{9}H_{15}N_{2}O_{3}$	199.1083
C ₁₄ H ₂₉	197.2270	C, H ₆ N,O,	198.0429	$C_{9}H_{17}N_{3}O_{2}$	199.1322
C ₁₄ H ₁₃ O	197.0967	$C_{11}H_{24}N_{3}$	198.1972	C ₉ HN ₃ O ₃	199.0018
C ₁₄ H ₁₅ N	197.1205	C ₁₁ H ₈ N ₃ O	198.0668	C ₉ H ₁₉ N ₄ O	199.1560
C ₁₄ HN,	197.0104	$C_{11}H_{10}N_4$	198.0907	C ₉ H ₃ N ₄ O ₂	199.0257
C ₁₅ H ₁₇	197.1331	$C_{12}H_{22}O_{2}$	198.1620	C ₁₀ H ₁₅ O ₄	199.0970
CLHO	197.0027	$C_{12}H_{6}O_{3}$	198.0317	$C_{10}H_{17}NO_{3}$	199.1209
C ₁₅ H ₃ N	197.0266	$C_{12}H_{24}NO$	198.1859	C ₁₀ HNO ₄	198.9905
C ₁₆ H	197.0391	$C_{12}H_8NO_2$	198.0555	$C_{10}H_{19}N_{2}O_{2}$	199.1447
198		$C_{12}H_{26}N_2$	198.2098	$C_{10}H_{3}N_{2}O_{3}$	199.0144
$C_{8}H_{10}N_{2}O_{4}$	198.0641	$C_{12}H_{10}N_{2}O$	198.0794	C ₁₀ H ₂₁ N ₃ O	199.1686
$C_{8}H_{12}N_{3}O_{3}$	198.0879	$C_{12}H_{12}N_{3}$	198.1032	C ₁₀ H ₅ N ₃ O ₂	199.0382
$C_8H_{14}N_4O_2$	198.1118	C ₁₃ H ₂₆ O	198.1985	$C_{10}H_{23}N_{4}$	199.1925
$C_9H_{12}NO_4$	198.0766	$C_{13}H_{10}O_{2}$	198.0681	C ₁₀ H ₇ N ₄ O	199.0621
$C_{9}H_{14}N_{2}O_{3}$	198.1005	C ₁₃ H ₂₈ N	198.2223	C ₁₁ H ₁₉ O ₃	199.1334
$C_{9}H_{16}N_{3}O_{2}$	198.1244	C ₁₃ H ₁₂ NO	198.0919	C ₁₁ H ₃ O ₄	199.0031
$C_9N_3O_3$	197.9940	$C_{13}H_{14}N_{2}$	198.1158	$C_{11}H_{21}NO_2$	199.1573
C ₉ H ₁₈ N ₄ O	198.1482	C ₁₃ N ₃	198.0093	C ₁₁ H ₅ NO ₃	199.0269
C ₉ H ₂ N ₄ O ₂	198.0178	C ₁₄ H ₃₀	198.2349	$C_{11}H_{23}N_{2}O$	199.1811
C ₁₀ H ₁₄ O ₄	198.0892	C ₁₄ H ₁₄ O	198.1045	$C_{11}H_{7}N_{2}O_{2}$	199.0508
C ₁₀ H ₁₆ NO ₃	198.1131	$C_{14}H_{16}N$	198.1284	$C_{11}H_{25}N_{3}$	199.2050
C ₁₀ NO ₄	197.9827	C ₁₄ NO	197.9980	$C_{11}H_9N_3O$	199.0746
$C_{10}H_{18}N_2O_2$	198.1369	$C_{14}H_2N_2$	198.0218	$C_{11}H_{11}N_{4}$	199.0985
$C_{10}H_{2}N_{2}O_{3}$	198.0065	C ₁₅ H ₁₈	198.1409	C ₁₂ H ₂₃ O ₂	199.1699
C ₁₀ H ₂₀ N ₃ O	198.1608	C ₁₅ H ₂ O	198.0106	C ₁₂ H ₇ O ₃	199.0395
$C_{10}H_{4}N_{3}O_{2}$	198.0304	C ₁₅ H ₄ N	198.0344	C ₁₂ H ₂₅ NO	199.1937
$C_{10}H_{22}N_{4}$	198.1846	C ₁₆ H ₆	198.0470	C ₁₂ H ₉ NO ₂	199.0634
C ₁₀ H ₆ N ₄ O	198.0542	199		$C_{12}H_{27}N_{2}$	199.2176
C ₁₁ H ₁₈ O' ₃	198.1256	$C_{8}H_{11}N_{2}O_{4}$	199.0719	C ₁₂ H ₁₁ N ₂ O	199.0872

	FM		FM		FM
$C_{12}H_{13}N_{3}$	199.1111	$C_{10}H_6N_3O_2$	200.0460	C ₁₅ H ₄ O	200.0262
C ₁₃ H ₂₇ O	199.2063	$C_{10}H_{24}N_{4}$	200.2003	C ₁₅ H ₆ N	200.0501
$C_{13}H_{11}O_{2}$	199.0759	C ₁₀ H ₈ N ₄ O	200.0699	C ₁₆ H ₈	200.0626
C ₁₃ H ₂₉ N	199.2301	$C_{11}H_{20}O_{3}$	200.1413	201	
C ₁₃ H ₁₃ NO	199.0998	$C_{11}H_4O_4$	200.0109	$C_{8}H_{13}N_{2}O_{4}$	201.0876
C ₁₃ H ₁₅ N ₂	199.1236	C ₁₁ H ₂ ,NO,	200.1651	C ₈ H ₁₅ N ₃ O ₃	201.1114
C ₁₃ HN ₃	199.0171	$C_{11}H_6NO_3$	200.0348	$C_{8}H_{17}N_{4}O_{2}$	201.1353
C ₁₄ H ₁₅ O	199.1123	$C_{11}H_{24}N_{20}O$	200.1890	C ₉ H ₁₅ NO ₄	201.1001
C ₁₄ H ₁₇ N	199.1362	$C_{11}H_8N_2O_2$	200.0586	$C_9H_{17}N_2O_3$	201.1240
C ₁₄ HNO	199.0058	$C_{11}H_{26}N_{3}$	200.2129	C ₉ HN ₂ O ₄	200.9936
C ₁₄ H ₃ N ₂	199.0297	C ₁₁ H ₁₀ N ₃ O	200.0825	$C_{9}H_{19}N_{3}O_{2}$	201.1478
C ₁₅ H ₁₉	199.1488	$C_{11}H_{12}N_{4}$	200.1063	C ₉ H ₃ N ₃ O ₃	201.0175
C ₁₅ H ₃ O	199.0184	$C_{12}H_{23}O_{2}$	200.1777	C ₉ H ₂₁ N ₄ O	201.1717
C ₁₅ H ₅ N	199.0422	$C_{12}H_{8}O_{3}$	200.0473	C ₉ H ₅ N ₄ O ₂	201.0413
C ₁₆ H ₇	199.0548	C ₁₂ H ₂₆ NO	200.2015	C ₁₀ H ₁₇ O ₄	201.1127
200		$C_{12}H_{10}NO_{2}$	200.0712	C ₁₀ H ₁₉ NO ₃	201.1365
C ₈ H ₁₂ N ₂ O ₄	200.0797	$C_{12}H_{28}N_{2}$	200.2254	C ₁₀ H ₃ NO ₄	201.0062
C ₈ H ₁₄ N ₃ O ₃	200.1036	C ₁₂ H ₁₂ N ₂ O	200.0950	$C_{10}H_{21}N_2O_2$	201.1604
$C_{8}H_{16}N_{4}O_{2}$	200.1275	$C_{12}H_{14}N_{3}$	200.1189	$C_{10}H_5N_2O_3$	201.0300
C ₉ H ₁₄ NO ₄	200.0923	C ₁₂ N ₄	200.0124	$C_{10}H_{23}N_{3}O$	201.1842
C ₉ H ₁₆ N ₂ O ₃	200.1162	C ₁₃ H ₂₈ O	200.2141	$C_{10}H_7N_3O_2$	201.0539
$C_9N_2O_4$	199.9858	$C_{13}H_{12}O_{2}$	200.0837	$C_{10}H_{25}N_{4}$	201.2081
$C_9H_{18}N_3O_2$	200.1400	C ₁₃ H ₁₄ NO	200.1076	$C_{10}H_9N_4O$	201.0777
$C_9H_2N_3O_3$	200.0096	$C_{13}H_{16}N_{2}$	200.1315	$C_{11}H_{21}O_{3}$	201.1491
$C_9H_{20}N_4O$	200.1639	C ₁₃ N ₂ O	200.0011	C ₁₁ H ₅ O ₄	201.0187
C ₉ H ₄ N ₄ O ₂	200.0335	$C_{13}H_{2}N_{3}$	200.0249	$C_{11}H_{23}NO_{2}$	201.1730
C ₁₀ H ₁₆ O ₄	200.1049	C ₁₄ H ₁₆ O	200.1202	$C_{11}H_7NO_3$	201.0426
$C_{10}H_{18}NO_{3}$	200.1287	C ₁₄ O ₂	199.9898	$C_{11}H_{25}N_{2}O$	201.1968
C ₁₀ H ₂ NO ₄	199.9983	$C_{14}H_{18}N$	200.1440	$C_{11}H_9N_2O_2$	201.0664
C ₁₀ H ₂₀ N ₂ O ₂	200.1526	$C_{14}H_2NO$	200.0136	$C_{11}H_{27}N_3$	201.2207
$C_{10}H_4N_2O_3$	200.0222	$C_{14}H_4N_2$	200.0375	C ₁₁ H ₁₁ N ₃ O	201.0903
C ₁₀ H ₂₂ N ₃ O	200.1764	C ₁₅ H ₂₀	200.1566	$C_{11}H_{13}N_{4}$	201.1142

• <u> </u>	FM		FM		FM
$C_{12}H_{25}O_{2}$	201.1855	C ₁₀ H ₁₈ O ₄	202.1205	$C_{14}H_{20}N$	202.1597
$C_{12}H_9O_3$	201.0552	$C_{10}H_{20}NO_{3}$	202.1444	C ₁₄ H ₄ NO	202.0293
C ₁₂ H ₂₇ NO	201.2094	C ₁₀ H ₄ NO ₄	202.0140	$C_{14}H_6N_2$	202.0532
$C_{12}H_{11}NO_2$	201.0790	$C_{10}H_{22}N_{2}O_{2}$	202.1682	C ₁₅ H ₂₂	202.1722
$C_{12}H_{13}N_{2}O$	201.1029	$C_{10}H_{6}N_{2}O_{3}$	202.0379	C ₁₅ H ₆ O	202.0419
$C_{12}H_{15}N_{3}$	201.1267	C ₁₀ H ₂₄ N ₃ O	202.1921	C ₁₅ H ₈ N	202.0657
C ₁₂ HN ₄	201.0202	C ₁₀ H ₈ N ₃ O ₂	202.0617	C ₁₆ H ₁₀	202.0783
C ₁₃ H ₁₃ O ₂	201.0916	$C_{10}H_{26}N_{4}$	202.2160	203	
C ₁₃ H ₁₅ NO	201.1154	C ₁₀ H ₁₀ N ₄ O	202.0856	$C_{8}H_{15}N_{2}O_{4}$	203.1032
$C_{13}H_{17}N_{2}$	201.1393	$C_{11}H_{22}O_{3}$	202.1569	C ₈ H ₁₇ N ₃ O ₃	203.1271
C ₁₃ HN ₂ O	201.0089	C ₁₁ H ₆ O ₄	202.0266	$C_{8}H_{19}N_{4}O_{2}$	203.1509
$C_{13}H_{3}N_{3}$	201.0328	$C_{11}H_{24}NO_2$	202.1808	$C_9H_{17}NO_4$	203.1158
C ₁₄ H ₁₇ O	201.1280	C ₁₁ H ₈ NO ₃	202.0504	$C_{9}H_{19}N_{2}O_{3}$	203.1396
C ₁₄ HO ₂	200.9976	$C_{11}H_{26}N_{2}O$	202.2046	$C_9H_3N_2O_4$	203.0093
$C_{14}H_{19}N$	201.1519	$C_{11}H_{10}N_2O_2$	202.0743	$C_{9}H_{21}N_{3}O_{2}$	203.1635
C ₁₄ H ₃ NO	201.0215	C ₁₁ H ₁₂ N ₃ O	202.0981	$C_9H_5N_3O_3$	203.0331
$C_{14}H_5N_2$	201.0453	$C_{11}H_{14}N_{4}$	202.0122	$C_9H_{23}N_4O$	203.1873
C ₁₅ H ₂₁	201.1644	C ₁₂ H ₂₆ O ₂	202.1934	C ₉ H ₇ N ₄ O ₂	203.0570
C ₁₅ H ₅ O	201.0340	C ₁₂ H ₁₀ O ₃	202.0630	C ₁₀ H ₁₉ O ₄	203.1284
C ₁₅ H ₇ N	201.0579	$C_{12}H_{12}NO_2$	202.0868	$C_{10}H_{21}NO_{3}$	203.1522
C ₁₆ H ₉	201.0705	$C_{12}H_{14}N_{2}O$	202.1107	C ₁₀ H ₅ NO ₄	203.0218
202		$C_{12}H_{16}N_{3}$	202.1346	$C_{10}H_{23}N_2O_2$	203.1761
$C_8H_{14}N_2O_4$	202.0954	C ₁₂ N ₃ O	202.0042	$C_{10}H_7N_2O_3$	203.0457
$C_{8}H_{16}N_{3}O_{3}$	202.1193	$C_{12}H_2N_4$	202.0280	C ₁₀ H ₂₅ N ₃ O	203.1999
$C_{8}H_{18}N_{4}O_{2}$	202.1431	$C_{13}H_{14}O_{2}$	202.0994	$C_{10}H_{9}N_{3}O_{2}$	203.0695
C ₉ H ₁₆ NO ₄	202.1080	C ₁₃ H ₁₆ NO	202.1233	$C_{10}H_{11}N_{4}O$	203.0934
$C_{9}H_{18}N_{2}O_{3}$	202.1318	C ₁₃ NO ₂	201.9929	C ₁₁ H ₂₃ O ₃	203.1648
$C_9H_2N_2O_4$	202.0014	$C_{13}H_{18}N_{2}$	202.1471	$C_{11}H_7O_4$	203.0344
$C_9H_{20}N_3O_2$	202.1557	$C_{13}H_2N_2O$	202.0167	C ₁₁ H ₂₅ NO ₂	203.1886
C ₉ H ₄ N ₃ O ₃	202.0253	$C_{13}H_{4}N_{3}$	202.0406	$C_{11}H_9NO_3$	203.0583
$C_9H_{22}N_4O$	202.1795	$C_{14}H_{18}O$	202.1358	$C_{11}H_{11}N_2O_2$	203.0821
$C_9H_6N_4O_2$	202.0491	$C_{14}H_2O_2$	202.0054	C ₁₁ H ₁₃ N ₃ O	203.1060
~					

-

	FM		FM		FM
C ₁₁ H ₁₅ N ₄	203.1298	$C_{o}H_{8}N_{4}O_{2}$	204.0648	C ₁₄ H ₆ NO	204.0449
C ₁₂ H ₁₁ O ₃	203.0708	$C_{10}H_{20}O_{4}$	204.1362	$C_{14}H_8N_2$	204.0688
$C_{12}H_{13}NO_2$	203.0947	C ₁₀ H ₂₂ NO ₃	204.1600	C ₁₅ H ₂₄	204.1879
C ₁ ,H ₁₅ N ₂ O	203.1185	$C_{10}H_6NO_4$	204.0297	C ₁₅ H ₈ O	204.0575
C ₁₂ H ₁₇ N ₃	203.1424	C ₁₀ H, ₄ N,O,	204.1839	$C_{15}H_{10}N$	204.0814
C ₁ ,HN ₃ O	203.0120	$C_{10}H_{8}N_{2}O_{3}$	204.0535	$C_{16}H_{12}$	204.0939
$C_{12}H_3N_4$	203.0359	C ₁₀ H ₁₀ N ₃ O ₂	204.0774	C ₁₇	204.0000
C ₁₃ H ₁₅ O,	203.1072	$C_{10}H_{12}N_4O$	204.1012	205	
C ₁₃ H ₁₇ NO	203.1311	$C_{11}H_{24}O_{3}$	204.1726	$C_{8}H_{17}N_{2}O_{4}$	205.1159
C ₁₃ HNO ₂	203.0007	C ₁₁ H ₈ O ₄	204.0422	$C_8H_{19}N_3O_3$	205.1427
$C_{13}H_{19}N_{2}$	203.1549	$C_{11}H_{10}NO_3$	204.0661	$C_{8}H_{21}N_{4}O_{2}$	205.1666
$C_{13}H_3N_2O$	203.0246	$C_{11}H_{12}N_2O_2$	204.0899	C ₉ H ₁₉ NO ₄	205.1315
$C_{13}H_5N_3$	203.0484	$C_{11}H_{14}N_{3}O$	204.1138	$C_9H_{21}N_2O_3$	205.1553
C ₁₄ H ₁₉ O	203.1436	$C_{11}H_{16}N_{4}$	204.1377	C ₉ H ₅ N ₂ O ₄	205.0249
$C_{14}H_3O_2$	203.0133	C ₁₁ N ₄ O	204.0073	$C_{9}H_{23}N_{3}O_{2}$	205.1791
$C_{14}H_{21}N$	203.1675	$C_{12}H_{12}O_{3}$	204.0786	C ₉ H ₇ N ₃ O ₃	205.0488
C ₁₄ H ₅ NO	203.0371	$C_{12}H_{14}NO_2$	204.1025	C ₉ H ₉ N ₄ O ₂	205.0726
$C_{14}H_{7}N_{2}$	203.0610	$C_{12}H_{18}N_{2}O$	204.1264	C ₁₀ H ₂₁ O ₄	205.1440
C ₁₅ H ₂₃	203.1801	$C_{12}N_{2}O_{2}$	203.9960	C ₁₀ H ₂₃ NO ₃	205.1679
C ₁₅ H ₇ O	203.0497	$C_{12}H_{18}N_{3}$	204.1502	C ₁₀ H ₇ NO ₄	205.0375
C ₁₅ H ₉ N	203.0736	C ₁₂ H ₂ N ₃ O	204.0198	$C_{10}H_{9}N_{2}O_{3}$	205.0614
C ₁₆ H ₁₁	203.0861	$C_{12}H_4N_4$	204.0437	C ₁₀ H ₁₁ N ₃ O ₂	205.0852
204		$C_{13}H_{16}O_{2}$	204.1151	C ₁₀ H ₁₃ N ₄ O	205.1091
$C_{8}H_{16}N_{2}O_{4}$	204.1111	C ₁₃ O ₃	203.9847	C ₁₁ H ₉ O ₄	205.0501
$C_{8}H_{18}N_{3}O_{3}$	204.1349	C ₁₃ H ₁₈ NO	204.1389	$C_{11}H_{11}NO_3$	205.0739
$C_{8}H_{20}N_{4}O_{2}$	204.1588	$C_{13}H_2NO_2$	204.0085	C ₁₁ H ₁₃ N ₂ O ₂	205.0978
C ₉ H ₁₈ NO ₄	204.1236	$C_{13}H_{20}N_{2}$	204.1628	C ₁₁ H ₁₅ N ₃ O	205.1216
C ₉ H ₂₀ N ₂ O ₃	204.1475	$C_{13}H_4N_2O$	204.0324	C ₁₁ H ₁₇ N ₄	205.1455
C ₉ H ₄ N ₂ O ₄	204.0171	$C_{13}H_{6}N_{3}$	204.0563	C ₁₁ HN ₄ O	205.0151
C ₉ H ₂₂ N ₃ O ₂	204.1713	C ₁₄ H ₂₀ O	204.1515	C ₁₂ H ₁₃ O ₃	205.0865
C ₉ H ₆ N ₃ O ₃	204.0410	$C_{14}H_4O_2$	204.0211	$C_{12}H_{15}NO_2$	205.1103
C ₉ H ₁₄ N ₄ O	204.1952	$C_{14}H_{22}N$	204.1753	C ₁₂ H ₁₇ N ₂ O	205.1342

	FM	······································	FM		FM
C ₁ ,HN,O,	205.0038	$C_{10}H_{10}N_2O_3$	206.0692	C ₁₅ H ₁₂ N	206.0970
$C_{12}H_{19}N_{3}$	205.1580	$C_{10}H_{12}N_{3}O_{2}$	206.0930	$C_{16}H_{14}$	206.1096
C,,H,N,O	205.0277	$C_{10}H_{14}N_{4}O$	206.1169	C ₁₆ N	206.0031
$C_{12}H_5N_4$	205.0515	$C_{11}H_{10}O_{4}$	206.0579	C ₁₇ H,	206.0157
C ₁₃ H ₁₇ O,	205.1229	$C_{11}H_{12}NO_3$	206.0817	207	
C ₁₃ HO ₃	204.9925	$C_{11}H_{14}N_{2}O_{2}$	206.1056	C ₈ H ₁₉ N,O ₄	207.1345
C ₁₃ H ₁₉ NO	205.1467	C ₁₁ H ₁₆ N ₃ O	206.1295	$C_{8}H_{2}N_{3}O_{3}$	207.1584
$C_{13}H_3NO_2$	205.0164	$C_{11}N_3O_2$	205.9991	$C_9H_{21}NO_4$	207.1471
$C_{13}H_{21}N_{2}$	205.1706	$C_{11}H_{18}N_{4}$	206.1533	$C_9H_7N_2O_4$	207.0406
$C_{13}H_{5}N_{2}O$	205.0402	C ₁₁ H ₂ N ₄ O	206.0229	C ₉ H ₉ N ₃ O ₃	207.0644
$C_{13}H_7N_3$	205.0641	$C_{12}H_{14}O_{3}$	206.0943	$C_{9}H_{11}N_{4}O_{2}$	207.0883
C ₁₄ H ₂₁ O	205.1593	$C_{12}H_{16}NO_2$	206.1182	C ₁₀ H ₉ NO ₄	207.0532
$C_{14}H_5O_2$	205.0289	C ₁₂ NO ₃	205.9878	$C_{10}H_{11}N_{2}O_{3}$	207.0770
$C_{14}H_{23}N$	205.1832	$C_{12}H_{18}N_{2}O$	206.1420	$C_{10}H_{13}N_{3}O_{2}$	207.1009
C ₁₄ H ₇ NO	205.0528	$C_{12}H_2N_2O_2$	206.0116	C ₁₀ H ₁₅ N ₄ O	207.1247
$C_{14}H_9N_2$	205.0767	$C_{12}H_{20}N_{3}$	206.1659	$C_{11}H_{11}O_4$	207.0657
C ₁₅ H ₂₅	205.1957	$C_{12}H_4N_3O$	206.0355	$C_{11}H_{13}NO_3$	207.0896
C ₁₅ H ₉ O	205.0653	$C_{12}H_6N_4$	206.0594	C ₁₁ H ₁₅ N ₂ O ₂	207.1134
C ₁₅ H ₁₁ N	205.0892	$C_{13}H_{18}O_{2}$	206.1307	C ₁₁ H ₁₇ N ₃ O	207.1373
C ₁₆ H ₁₃	205.1018	$C_{13}H_{2}O_{3}$	206.0003	C ₁₁ HN ₃ O ₂	207.0069
C ₁₇ H	205.0078	$C_{13}H_{20}NO$	206.1546	$C_{11}H_{19}N_{4}$	207.1611
206		$C_{13}H_4NO_2$	206.0242	C ₁₁ H ₃ N ₄ O	207.0308
C ₈ H ₁₈ N ₂ O ₄	206.1267	$C_{13}H_{22}N_{2}$	206.1784	C ₁₂ H ₁₅ O ₃	207.1021
C ₈ H ₂₀ N ₃ O ₃	206.1506	$C_{13}H_6N_2O$	206.0480	$C_{12}H_{17}NO_{2}$	207.1260
$C_{8}H_{22}N_{4}O_{2}$	206.1744	$C_{13}H_8N_3$	206.0719	C ₁₂ HNO ₃	206.9956
$C_9H_{20}NO_4$	206.1393	$C_{14}H_{22}O$	206.1671	C ₁₂ H ₁₉ N ₂ O	207.1498
$C_9H_{22}N_2O_3$	206.1631	$C_{14}H_6O_2$	206.0368	$C_{12}H_{3}N_{2}O_{2}$	207.0195
C ₉ H ₆ N ₂ O ₄	206.0328	$C_{14}H_{24}N$	206.1910	$C_{12}H_{21}N_{3}$	207.1737
$C_9H_8N_3O_3$	206.0566	C ₁₄ H ₈ NO	206.0606	C ₁₂ H ₅ N ₃ O	207.0433
$C_{9}H_{10}N_{4}O_{2}$	206.0805	$C_{14}H_{10}N_2$	206.0845	$C_{12}H_7N_4$	207.0672
C ₁₀ H ₂₂ O ₄	206.1518	C ₁₅ H ₂₆	206.2036	C ₁₃ H ₁₉ O ₂	207.1385
C ₁₀ H ₈ NO ₄	206.0453	C ₁₅ H ₁₀ O	206.0732	C ₁₃ H ₃ O ₃	207.0082

~

	FM		FM		FM
C ₁₃ H ₂₁ NO	207.1624	$C_{11}H_{20}N_{4}$	208.1690	C ₉ H ₁₁ N ₃ O ₃	209.0801
C ₁₃ H ₅ NO ₂	207.0320	C ₁₁ H ₄ N ₄ O	208.0386	$C_{9}H_{13}N_{4}O_{2}$	209.1040
C ₁₃ H ₂₃ N ₂	207.1863	$C_{12}H_{16}O_{3}$	208.1100	C ₁₀ H ₁₁ NO ₄	209.0688
C ₁₃ H ₇ N ₂ O	207.0559	C ₁₂ O ₄	207.9796	$C_{10}H_{13}N_2O_3$	209.0927
$C_{13}H_{0}N_{3}$	207.0798	$C_{12}H_{18}NO_{2}$	208.1338	$C_{10}H_{15}N_{3}O_{2}$	209.1165
C,4H,3O	207.1750	$C_{12}H_2NO_3$	208.0034	$C_{10}H_{17}N_4O$	209.1404
C ₁₄ H ₇ O,	207.0446	$C_{12}H_{20}N_{2}O$	208.1577	$C_{10}HN_4O_2$	209.0100
C ₁₄ H ₂₅ N	207.1988	$C_{12}H_4N_2O_2$	208.0273	$C_{11}H_{13}O_4$	209.0814
C ₁₄ H ₉ NO	207.0684	$C_{12}H_{22}N_3$	209.1815	$C_{11}H_{15}NO_{3}$	209.1052
$C_{14}H_{11}N_{2}$	207.0923	$C_{12}H_6N_3O$	208.0511	$C_{11}H_{17}N_{2}O_{2}$	209.1291
C ₁₅ H ₂₇	207.2114	$C_{12}H_8N_4$	208.0750	$C_{11}HN_{2}O_{3}$	208.9987
C ₁₅ H ₁₁ O	207.0810	$C_{13}H_{20}O_{2}$	208.1464	C ₁₁ H ₁₉ N ₃ O	209.1529
C ₁₅ H ₁₃ N	207.1049	$C_{13}H_4O_3$	208.0160	$C_{11}H_3N_3O_2$	209.0226
C ₁₆ H ₁₅	207.1174	$C_{13}H_{22}NO$	208.1702	$C_{11}H_{21}N_{4}$	209.1768
C ₁₆ HN	207.0109	$C_{13}H_6NO_2$	208.0399	C ₁₁ H ₅ N ₄ O	209.0464
$C_{17}H_3$	207.0235	$C_{13}H_{24}N_2$	200.1941	C ₁₂ H ₁₇ O ₃	209.1178
208		C H N	208.0037	C ₁₂ HO ₄	208.9874
$C_{8}H_{20}N_{2}O_{4}$	208.1424	C H O	208.0870	C ₁₂ H ₁₉ NO ₂	209.1416
$C_9H_8N_2O_4$	208.0484	C H O	208.0524	C ₁₂ H ₃ NO ₃	209.0113
C ₉ H ₁₀ N ₃ O ₃	208.0723	$C_{14} H_{8} O_{2}$	209.2067	$C_{12}H_{21}N_{2}O$	209.1655
$C_{9}H_{12}N_{4}O_{2}$	208.0961	CHNO	208.0763	C ₁₂ H ₅ N ₂ O ₂	209.0351
C ₁₀ H ₁₀ NO ₄	208.0610	$C_{14}H_{10}N_{2}$	208.1001	C ₁₂ H ₂₃ N ₃	209.1894
$C_{10}H_{12}N_{2}O_{3}$	208.0848	$C_{15}H_{28}$	208.2192	C ₁₂ H ₇ N ₃ O	209.0590
C ₁₀ H ₁₄ N ₃ O ₂	208.1087	C ₁₅ H ₁ ,O	208.0888	$C_{12}H_{9}N_{4}$	209.0829
C ₁₀ H ₁₆ N ₄ O	208.1325	$C_{15}H_{14}N$	208.1127	C ₁₃ H ₂₁ O ₂	209.1542
$C_{10}N_{4}O_{2}$	208.0022	$C_{15}N_2$	208.0062	C ₁₃ H ₅ O ₃	209.0238
C ₁₁ H ₁₂ O ₄	208.0735	C ₁₆ H ₁₆	208.1253	C ₁₃ H ₂₃ NO	209.1781
$C_{11}H_{14}NO_3$	208.0974	C ₁₆ O	207.9949	C ₁₃ H ₇ NO ₂	209.0477
$C_{11}H_{16}N_2O_2$	208.1213	$C_{16}H_2N$	208.0187	$C_{13}H_{25}N_{2}$	209.2019
$C_{11}N_{2}O_{3}$	207.9909	C ₁₇ H ₄	208.0313	$C_{13}H_9N_2O$	209.0715
C ₁₁ H ₁₈ N ₃ O	208.1451	209		C ₁₃ H ₁₁ N ₃	209.0954
$C_{11}H_2N_3O_2$	208.0147	$C_9H_9N_2O_4$	209.0563	C ₁₄ H ₂₅ O	209.1906

······································	FM		FM		FM
$\overline{C_{14}H_9O_2}$	209.0603	C ₁₂ H ₂ O ₄	209.9953	C ₉ H ₁₃ N ₃ O ₃	211.0958
C ₁₄ H ₂₇ N	209.2145	$C_{12}H_{20}NO_{2}$	210.1495	$C_9H_{15}N_4O_2$	211.1196
C ₁₄ H ₁₁ NO	209.0841	$C_{12}H_4NO_3$	210.0191	C ₁₀ H ₁₃ NO ₄	211.0845
$C_{14}H_{13}N_2$	209.1080	$C_{12}H_{22}N_{2}O$	210.1733	$C_{10}H_{15}N_{2}O_{3}$	211.1083
C ₁₅ H ₂₉	209.2270	$C_{12}H_{6}N_{2}O_{2}$	210.0429	C ₁₀ H ₁₇ N ₃ O ₂	211.1322
C ₁₅ H ₁₃ O	209.0967	$C_{12}H_{24}N_{3}$	210.1972	C ₁₀ HN ₃ O ₃	211.0018
C ₁₅ H ₁₅ N	209.1205	$C_{12}H_8N_3O$	210.0668	C ₁₀ H ₁₉ N ₄ O	211.1560
$C_{15}HN_2$	209.0140	$C_{12}H_{10}N_{4}$	210.0907	C ₁₀ H ₃ N ₄ O ₂	211.0257
C ₁₆ H ₁₇	209.1331	$C_{13}H_{22}O_{2}$	210.1620	C ₁₁ H ₁₅ O ₄	211.0970
C ₁₆ HO	209.0027	$C_{13}H_{6}O_{3}$	210.0317	C ₁₁ H ₁₇ NO ₃	211.1209
C ₁₆ H ₃ N	209.0266	C ₁₃ H ₂₄ NO	210.1859	C ₁₁ HNO ₄	210.9905
C ₁₇ H ₅	209.0391	C ₁₃ H ₈ NO ₂	210.0555	$C_{11}H_{19}N_2O_2$	211.1447
210		$C_{13}H_{26}N_{2}$	210.2098	$C_{11}H_{3}N_{2}O_{3}$	211.0144
C ₉ H ₁₀ N ₂ O ₄	216.0641	C ₁₃ H ₁₀ N ₂ O	210.0794	C ₁₁ H ₂₁ N ₃ O	211.1686
$C_{9}H_{12}N_{3}O_{3}$	210.0879	$C_{13}H_{12}N_{3}$	210.1032	$C_{11}H_5N_3O_2$	211.0382
$C_9H_{14}N_4O_2$	210.1118	C ₁₄ H ₂₆ O	210.1985	$C_{11}H_{23}N_{4}$	211.1925
C ₁₀ H ₁₂ NO ₄	210.0766	C ₁₄ H ₁₀ O ₂	210.0681	$C_{11}H_7N_4O$	211.0621
C ₁₀ H ₁₄ N ₂ O ₃	210.1005	$C_{14}H_{28}N$	210.2223	C ₁₂ H ₁₉ O ₃	211.1334
C ₁₀ H ₁₆ N ₃ O ₂	210.1244	C ₁₄ H ₁₂ NO	210.0919	C ₁₂ H ₃ O ₄	211.0031
C ₁₀ N ₃ O ₃	209.9940	$C_{14}H_{14}N_{2}$	210.1158	$C_{12}H_{21}NO_{2}$	211.1573
C ₁₀ H ₁₈ N ₄ O	210.1482	C ₁₄ N ₃	210.0093	C ₁₂ H ₅ NO ₃	211.0269
$C_{10}H_{2}N_{4}O_{2}$	210.0178	C ₁₅ H ₃₀	210.2349	C ₁₂ H ₂₃ N ₂ O	211.1811
C ₁₁ H ₁₄ O ₄	210.0892	C ₁₅ H ₁₄ O	210.1045	$C_{12}H_7N_2O_2$	211.0508
$C_{11}H_{16}NO_{3}$	210.1131	C ₁₅ H ₁₆ N	210.1284	$C_{12}H_{25}N_{3}$	211.2050
C ₁₁ NO ₄	209.9827	C ₁₅ NO	209.9980	$C_{12}H_9N_3O$	211.0746
$C_{11}H_{18}N_2O_2$	210.1369	$C_{15}H_{2}N_{2}$	210.0218	$C_{12}H_{11}N_{4}$	211.0985
$C_{11}H_2N_2O_3$	210.0065	C ₁₆ H ₁₈	210.1409	$C_{13}H_{23}O_{2}$	211.1699
$C_{11}H_{23}N_{3}O$	210.1608	$C_{16}H_2O$	210.0106	$C_{13}H_7O_3$	211.0395
$C_{11}H_4N_3O_2$	210.0304	$C_{16}H_4N$	210.0344	C ₁₃ H ₂₅ NO	211.1937
$C_{11}H_{22}N_{4}$	210.1846	C ₁₇ H ₆	210.0470	C ₁₃ H ₉ NO ₂	211.0634
C ₁₁ H ₆ N ₄ O	210.0542	211		$C_{13}H_{27}N_{2}$	211.2176
$C_{1,H_{18}}O_{3}$	210.1256	C ₉ H ₁₁ N,O ₄	211.0719	C ₁₃ H ₁₁ N ₂ O	211.0872

<u> </u>	FM		FM		FM
$\overline{C_1,H_1,N_2}$	211.1111	C,,H,,N,O	212.1764	C ₁₅ H ₂ NO	212.0136
C ₁₄ H ₂₇ O	211.2063	$C_{11}H_6N_3O_2$	212.0460	$C_{15}H_{4}N_{2}$	212.0375
$C_{14}H_{11}O_{2}$	211.0759	$C_{11}H_{24}N_{4}$	212.2003	$C_{16}H_{20}$	212.1566
C ₁₄ H ₂₉ N	211.2301	C ₁₁ H ₈ N ₄ O	212.0699	C ₁₆ H ₄ O	212.0262
C ₁₄ H ₁₃ NO	211.0998	C ₁ ,H ₂₀ O ₃	212.1413	C ₁₆ H ₆ N	212.0501
$C_{14}H_{15}N_{2}$	211.1236	C_1, H_4O_4	212.0109	$C_{17}H_8$	212.0626
C ₁₄ HN ₃	211.0171	C ₁₂ H ₂₂ NO ₂	212.1651	213	
C ₁₅ H ₃₁	211.2427	$C_{12}H_6NO_3$	212.0348	$C_9H_{13}N_2O_4$	213.0876
C ₁₅ H ₁₅ O	211.1123	C ₁₂ H ₂₄ N ₂ O	212.1890	$C_{9}H_{15}N_{3}O_{3}$	213.1114
C ₁₅ H ₁₇ N	211.1362	$C_{12}H_8N_2O_2$	212.0586	$C_{9}H_{17}N_{4}O_{2}$	213.1353
C ₁₅ HNO	211.0058	$C_{12}H_{26}N_{3}$	212.2129	C ₁₀ H ₁₅ NO ₄	213.1001
$C_{15}H_3N_2$	211.0297	C ₁₂ H ₁₀ N ₃ O	212.0825	C ₁₀ H ₁₇ N ₂ O ₃	213.1240
C ₁₆ H ₁₉	211.1488	$C_{12}H_{12}N_{4}$	212.1063	C ₁₀ HN ₂ O ₄	212.9936
C ₁₆ H ₃ O	211.0184	C ₁₃ H ₂₄ O ₂	212.1777	C ₁₀ H ₁₉ N ₃ O ₂	213.1478
C ₁₆ H ₅ N	211.0422	C ₁₃ H ₈ O ₃	212.0473	C ₁₀ H ₃ N ₃ O ₃	213.0175
C ₁₇ H ₇	211.0548	C ₁₃ H ₂₆ NO	212.2015	$C_{10}H_{21}N_4O$	213.1717
212		C ₁₃ H ₁₀ NO ₂	212.0712	$C_{10}H_{5}N_{4}O_{2}$	213.0413
C ₉ H ₁₂ N ₂ O ₄	212.0797	$C_{13}H_{28}N_{2}$	212.2254	C ₁₁ H ₁₇ O ₄	213.1127
C ₉ H ₁₄ N ₃ O ₃	212.1036	C ₁₃ H ₁₂ N ₂ O	212.0950	$C_{11}H_{19}NO_{3}$	213.1365
C ₉ H ₁₆ N ₄ O ₂	212.1275	C ₁₃ H ₁₄ N ₃	212.1189	$C_{11}H_3NO_4$	213.0062
C ₁₀ H ₁₄ NO ₄	212.0923	C ₁₃ N ₄	212.0124	$C_{11}H_{21}N_2O_2$	213.1604
$C_{10}H_{16}N_2O_3$	212.1162	C ₁₄ H ₂₈ O	212.2141	$C_{11}H_5N_2O_3$	213.0300
C ₁₀ N ₂ O ₄	211.9858	$C_{14}H_{12}O_2$	212.0837	C ₁₁ H ₂₃ N ₃ O	213.1842
$C_{10}H_{18}N_{3}O_{2}$	212.1400	$C_{14}H_{30}N$	212.2380	$C_{11}H_7N_3O_2$	213.0539
$C_{10}H_2N_3O_3$	212.0096	C ₁₄ H ₁₄ NO	212.1076	$C_{11}H_{25}N_4$	213.2081
C ₁₀ H ₂₀ N ₄ O	212.1639	$C_{14}H_{16}N_{2}$	212.1315	C ₁₁ H ₉ N ₄ O	213.0777
$C_{10}H_4N_4O_2$	212.0335	C ₁₄ N ₂ O	212.0011	$C_{12}H_{21}O_{3}$	213.1491
C ₁₁ H ₁₆ O ₄	212.1049	$C_{14}H_{2}N_{3}$	212.0249	C ₁₂ H ₅ O ₄	213.0187
$C_{11}H_{18}NO_3$	212.1287	C ₁₅ H ₃₂	212.2505	$C_{12}H_{23}NO_{2}$	213.1730
C ₁₁ H ₂ NO ₄	211.9983	C ₁₅ H ₁₆ O	212.1202	C ₁₂ H ₇ NO ₃	213.0426
C ₁₁ H ₂₀ N ₂ O ₂	212.1526	C ₁₅ O ₂	211.9898	$C_{12}H_{25}N_{2}O$	213.1968
$C_{11}H_{4}N_{2}O_{3}$	212.0222	C ₁₅ H ₁₈ N	212.1440	$C_{12}H_{9}N_{2}O_{2}$	213.0664

<u></u>	FM		FM		FM
C ₁₂ H ₂₇ N ₃	213.2207	$C_{10}H_{18}N_2O_3$	214.1318	$C_{13}H_2N_4$	214.0280
C ₁₂ H ₁₁ N ₃ O	213.0903	$C_{10}H_2N_2O_4$	214.0014	$C_{14}H_{30}O$	214.2298
$C_{12}H_{13}N_4$	213.1142	$C_{10}H_{20}N_{3}O_{2}$	214.1557	$C_{14}H_{14}O_2$	214.0994
$C_{13}H_{25}O_{2}$	213.1855	$C_{10}H_{4}N_{3}O_{3}$	214.0253	C ₁₄ H ₁₆ NO	214.1233
C ₁₃ H ₉ O ₃	213.0552	$C_{10}H_{22}N_{4}O$	214.1795	C ₁₄ NO ₂	213.9929
C ₁₃ H ₂₇ NO	213.2094	$C_{10}H_{6}N_{4}O_{2}$	214.0491	$C_{14}H_{18}N_2$	214.1471
$C_{13}H_{11}NO_2$	213.0790	C ₁₁ H ₁₈ O ₄	214.1205	$C_{14}H_2N_2O$	214.0167
$C_{13}H_{29}N_2$	213.2332	$C_{11}H_{20}NO_{3}$	214.1444	$C_{14}H_4N_3$	214.0406
$C_{13}H_{13}N_{2}O$	213.1029	C ₁₁ H ₄ NO ₄	214.0140	C ₁₅ H ₁₈ O	214.1358
C ₁₃ H ₁₅ N ₃	213.1267	$C_{11}H_{22}N_2O_2$	214.1682	C ₁₅ H ₂ O ₂	214.0054
C ₁₃ HN ₄	213.0202	$C_{11}H_6N_2O_3$	214.0379	C ₁₅ H ₂₀ N	214.1597
C ₁₄ H ₂₉ O	213.2219	$C_{11}H_{24}N_{3}O$	214.1921	C ₁₅ H ₄ NO	214.0293
$C_{14}H_{13}O_2$	213.0916	$C_{11}H_8N_3O_2$	214.0617	$C_{15}H_{6}N_{2}$	214.0532
C ₁₄ H ₃₁ N	213.2458	$C_{11}H_{26}N_{4}$	214.2160	C ₁₆ H ₂₂	214.1722
C ₁₄ H ₁₅ NO	213.1154	$C_{11}H_{10}N_4O$	214.0856	C ₁₆ H ₆ O	214.0419
$C_{14}H_{17}N_{2}$	213.1393	$C_{12}H_{22}O_{3}$	214.1569	C ₁₆ H ₈ N	214.0657
C ₁₄ HN ₂ O	213.0089	$C_{12}H_6O_4$	214.0266	C ₁₇ H ₁₀	214.0783
C ₁₄ H ₃ N ₃	213.0328	$C_{12}H_{24}NO_2$	214.1808	215	
C ₁₅ H ₁₇ O	213.1280	C ₁₂ H ₈ NO ₃	214.0504	$C_9H_{15}N_2O_4$	215.1032
C ₁₅ HO ₂	212.9976	$C_{12}H_{26}N_{2}O$	214.2046	$C_9H_{17}N_3O_3$	215.1271
C ₁₅ H ₁₉ N	213.1519	$C_{12}H_{10}N_2O_2$	214.0743	$C_{9}H_{19}N_{4}O_{2}$	215.1509
C ₁₅ H ₃ NO	213.0215	$C_{12}H_{28}N_3$	214.2285	C ₁₀ H ₁₇ NO ₄	215.1158
C ₁₅ H ₅ N ₂	213.0453	$C_{12}H_{12}N_{3}O$	214.0981	$C_{10}H_{19}N_2O_3$	215.1396
C ₁₆ H ₂₁	213.1644	$C_{12}H_{14}N_{4}$	214.1220	$C_{10}H_3N_2O_4$	215.0093
C ₁₆ H ₅ O	213.0340	C ₁₃ H ₂₆ O ₂	214.1934	$C_{10}H_{21}N_{3}O_{2}$	215.1635
C ₁₆ H ₇ N	213.0579	$C_{13}H_{10}O_{3}$	214.0630	C ₁₀ H ₅ N ₃ O ₃	215.0331
C ₁₇ H ₉	213.0705	$C_{13}H_{28}NO$	214.2172	$C_{10}H_{23}N_4O$	215.1873
214		$C_{13}H_{12}NO_2$	214.0859	$C_{10}H_7N_4O_2$	215.0570
C ₉ H ₁₄ N ₂ O ₄	214.0954	$C_{13}H_{30}N_{2}$	214.2411	C ₁₁ H ₁₉ O ₄	215.1284
$C_9H_{16}N_3O_3$	214.1193	$C_{13}H_{14}N_2O$	214.1107	$C_{11}H_{21}NO_3$	215.1522
$C_{9}H_{18}N_{4}O_{2}$	214.1431	$C_{13}H_{16}N_{3}$	214.1345	C ₁₁ H ₅ NO ₄	215.0218
$C_{10}H_{16}NO_{4}$	214.1080	C ₁₃ N ₃ O	214.0042	$C_{11}H_{23}N_2O_2$	215.1761

FM 5.0457 5.1999 5.0695	C ₁₅ H ₇ N ₂ C ₁₆ H ₂₃	FM 215.0610	C ₁₂ H ₁₆ N ₄	FM 216.1377
5.0457 5.1999 5.0695	C ₁₅ H ₇ N ₂ C ₁₆ H ₂₃	215.0610	$C_{12}H_{16}N_{4}$	216.1377
5.1999 5.0695	C ₁₆ H ₂₃			
5.0695		215.1801	C ₁₂ N ₄ O	216.0073
	C ₁₆ H ₇ O	215.0497	C ₁₃ H ₂₈ O ₂	216,2090
5.2238	C ₁₆ H ₉ N	215.0736	$C_{13}H_{12}O_{3}$	216.0786
5.0934	C ₁₇ H ₁₁	215.0861	$C_{13}H_{14}NO_2$	216.1025
5.1648	216		$C_{13}H_{16}N_{2}O$	216.1264
5.0344	$C_{9}H_{16}N_{2}O_{4}$	216.1111	$C_{13}N_{2}O_{2}$	215.9960
5.1 88 6	$C_{9}H_{18}N_{3}O_{3}$	216.1349	$C_{13}H_{18}N_{3}$	216.1502
5.0583	$C_{9}H_{20}N_{4}O_{2}$	216.1588	$C_{13}H_2N_3O$	216.0198
5.2125	C ₁₀ H ₁₈ NO ₄	216.1236	C ₁₃ H ₄ N ₄	216.0437
5.0821	$C_{10}H_{20}N_{2}O_{3}$	216.1475	$C_{14}H_{16}O_{2}$	216.1151
5.2363	$C_{10}H_4N_2O_4$	216.0171	C ₁₄ O ₃	215.9847
5.1060	C ₁₀ H ₂₂ N ₃ O ₂	216.1713	C ₁₄ H ₁₈ NO	216.1389
5.1298	C ₁₀ H ₆ N ₃ O ₃	216.0410	$C_{14}H_2NO_2$	216.0085
5.2012	$C_{10}H_{24}N_{4}O$	216.1952	$C_{14}H_{20}N_{2}$	216.1628
5.0708	$C_{10}H_{8}N_{4}O_{2}$	216.0648	$C_{14}H_4N_2O$	216.0324
5.2250	C ₁₁ H ₂₀ O ₄	216.1362	$C_{14}H_{6}N_{3}$	216.0563
5.0947	$C_{11}H_{22}NO_{3}$	216.1600	C ₁₅ H ₂₀ O	216.1515
5.1185	$C_{11}H_6NO_4$	216.0297	$C_{15}H_4O_2$	216.0211
5.1424	$C_{11}H_{24}N_{2}O_{2}$	216.1839	C ₁₅ H ₂₂ N	216.1753
5.0120	$C_{11}H_8N_2O_3$	216.0535	C ₁₅ H ₆ NO	216.0449
5.0359	$C_{11}H_{26}N_{3}O$	216.2077	$C_{15}H_{8}N_{2}$	216.0688
5.1072	$C_{11}H_{10}N_{3}O_{2}$	216.0774	C ₁₆ H ₂₄	216.1879
5.1311	$C_{11}H_{28}N_{4}$	216.2316	C ₁₆ H ₈ O	216.0575
5.0007	$C_{11}H_{12}N_4O$	216.1012	C ₁₆ H ₁₀ N	216.0814
5.1541	$C_{12}H_{24}O_{3}$	216.1726	C ₁₇ H ₁₂	216.0939
5.0246	C ₁₂ H ₈ O ₄	216.0422	C 18	216.0000
5. 048 4	$C_{12}H_{26}NO_{2}$	216.1965	217	
5.1436	$C_{12}H_{10}NO_{3}$	216.0661	$C_9H_{17}N_2O_4$	217.1189
5.0133	$C_{12}H_{28}N_{2}O$	216.2203	$C_9H_{19}N_3O_3$	217.1427
5.1675	$C_{12}H_{12}N_2O_2$	216.0899	$C_{9}H_{21}N_{4}O_{2}$	217.1666
5.0371	$C_{12}H_{14}N_{3}O$	216.1138	C ₁₀ H ₁₉ NO ₄	217.1315
	5.0695 5.2238 5.0934 5.1648 5.0344 5.1886 5.0583 5.2125 5.0821 5.2363 5.1060 5.1298 5.2012 5.0708 5.2250 5.0708 5.2250 5.0708 5.2250 5.0947 5.1185 5.2250 5.0947 5.1424 5.0120 5.0359 5.1424 5.0120 5.0359 5.1541 5.0007 5.1541 5.0246 5.0246 5.0484 5.1436 5.0133 5.1675 5.0371	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	5.0695 $C_{16}H_7O$ 215.04975.2238 $C_{16}H_9N$ 215.07365.0934 $C_{17}H_{11}$ 215.08615.1648 216 5.0344 $C_9H_{16}N_2O_4$ 216.11115.1886 $C_9H_{18}N_3O_3$ 216.13495.0583 $C_9H_{20}N_4O_2$ 216.15885.2125 $C_{10}H_{18}NO_4$ 216.12365.0821 $C_{10}H_{20}N_2O_3$ 216.14755.2363 $C_{10}H_4N_2O_4$ 216.01715.1060 $C_{10}H_{22}N_3O_2$ 216.17135.1298 $C_{10}H_6N_3O_3$ 216.04105.2012 $C_{10}H_2N_4O_2$ 216.19525.0708 $C_{10}H_8N_4O_2$ 216.06485.2250 $C_{11}H_{20}O_4$ 216.13625.0947 $C_{11}H_{20}N_3$ 216.05355.0359 $C_{11}H_6NO_4$ 216.02975.1424 $C_{11}H_2N_3O_2$ 216.07745.10702 $C_{11}H_{20}N_3O_2$ 216.07745.1311 $C_{11}H_{28}N_4$ 216.10125.0359 $C_{11}H_{20}N_3O_2$ 216.07745.1311 $C_{12}H_{24}O_3$ 216.04225.0484 $C_{12}H_8O_4$ 216.04225.0484 $C_{12}H_8O_2$ 216.19655.1436 $C_{12}H_{10}NO_3$ 216.06615.0371 $C_{12}H_{12}N_2O_2$ 216.08995.0371 $C_{12}H_{10}N_3O$ 216.1138	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

·····	EM		FM		EM
	F IVI		<u> </u>		F 1 V 1
$C_{10}H_{21}N_2O_3$	217.1553	C ₁₄ H ₁₉ NO	217.1467	C ₁₁ H ₁₄ N ₄ O	218.1169
$C_{10}H_5N_2O_4$	217.0249	$C_{14}H_3NO_2$	217.0164	$C_{12}H_{26}O_{3}$	218.1883
$C_{10}H_{23}N_{3}O_{2}$	217.1791	$C_{14}H_{21}N_{2}$	217.1706	$C_{12}H_{10}O_{4}$	218.0579
$C_{10}H_7N_3O_3$	217.0488	$C_{14}H_5N_2O$	217.0402	$C_{12}H_{12}NO_3$	218.0817
C ₁₀ H ₂₅ N ₄ O	217.2030	$C_{14}H_7N_3$	217.0641	$C_{12}H_{14}N_2O_2$	218.1056
$C_{10}H_9N_4O_2$	217.0726	C ₁₅ H ₂₁ O	217.1593	$C_{12}H_{16}N_{3}O$	218.1295
C ₁₁ H ₂₁ O ₄	217.1440	$C_{15}H_5O_2$	217.0289	$C_{12}N_{3}O_{2}$	217.9991
C ₁₁ H ₂₃ NO ₃	217.1679	C ₁₅ H ₂₃ N	217.1832	$C_{12}H_{18}N_{4}$	218.1533
C ₁₁ H ₇ NO ₄	217.0375	C ₁₅ H ₇ NO	217.0528	$C_{12}H_2N_4O$	218.0229
C ₁₁ H ₂₅ N ₂ O ₄	217.1917	$C_{15}H_9N_2$	217.0767	C ₁₃ H ₁₄ O ₃	218.0943
$C_{11}H_{9}N_{2}O_{3}$	217.0614	C ₁₆ H ₂₅	217.1957	$C_{13}H_{16}NO_2$	218.1182
C ₁₁ H ₂₇ N ₃ O	217.2156	C ₁₆ H ₉ O	217.0653	C ₁₃ NO ₃	217.9878
C ₁₁ H ₁₁ N ₃ O ₂	217.0852	C ₁₆ H ₁₁ N	217.0892	$C_{13}H_{18}N_{2}O$	218.1420
C ₁₁ H ₁₃ N ₄ O	217.1091	C ₁₇ H ₁₃	217.1018	$C_{13}H_2N_2O_2$	218.0116
$C_{11}H_{28}N_4$	216.2316	C ₁₈ H	217.0078	$C_{13}H_{20}N_{3}$	218.1659
C ₁₂ H ₂₅ O ₃	217.1804	218		C ₁₃ H ₄ N ₃ O	218.0355
C ₁₂ H ₉ O ₄	217.0501	$C_9H_{18}N_2O_4$	218.1267	$C_{13}H_6N_4$	218.0594
C ₁₂ H ₂₇ NO ₂	217.2043	$C_9H_{20}N_3O_3$	218.1506	$C_{14}H_{18}O_2$	218.1307
$C_{12}H_{11}NO_{3}$	217.0739	$C_9H_{22}N_4O_2$	218.1744	$C_{14}H_2O_3$	218.0003
C ₁₂ H ₁₃ N ₂ O ₂	217.0978	$C_{10}H_{20}NO_{4}$	218.1393	$C_{14}H_{20}NO$	218.1546
C ₁₂ H ₁₅ N ₃ O	217.1216	$C_{10}H_{22}N_2O_3$	218.1631	$C_{14}H_4NO_2$	218.0242
C ₁₂ H ₁₇ N ₄	217.1455	$C_{10}H_6N_2O_4$	218.0328	$C_{14}H_{22}N_2$	218.1784
C ₁₂ HN ₄ O	217.0151	$C_{10}H_{24}N_{3}O_{2}$	218.1870	$C_{14}H_6N_2O$	218.0480
$C_{13}H_{13}O_{3}$	217.0865	$C_{10}H_{8}N_{3}O_{3}$	218.0566	$C_{14}H_8N_3$	218.0719
C ₁₃ H ₁₅ NO ₂	217.1103	$C_{10}H_{26}N_4O$	218.2108	$C_{15}H_{22}O$	218.1671
$C_{13}H_{17}N_{2}O$	217.1342	$C_{10}H_{10}N_4O_2$	218.0805	$C_{15}H_6O_2$	218.0368
$C_{13}HN_2O_2$	217.0038	$C_{11}H_{22}O_{4}$	218.1518	$C_{15}H_{24}N$	218.1910
$C_{13}H_{19}N_{3}$	217.1580	$C_{11}H_{24}NO_3$	218.1757	C ₁₅ H ₈ NO	218.0606
C ₁₃ H ₃ N ₃ O	217.0277	$C_{11}H_8NO_4$	218.0453	$C_{15}H_{10}N_{2}$	218.0845
C ₁₃ H ₅ N ₄	217.0515	$C_{11}H_{26}N_2O_2$	218.1996	C ₁₆ H ₂₆	218.2036
C ₁₄ H ₁₇ O ₂	217.1229	$C_{11}H_{10}N_2O_3$	218.0692	C ₁₆ H ₁₀ O	218.0732
C ₁₄ HO ₃	216.9925	C ₁₁ H ₁₂ N ₃ O ₂	218.0930	$C_{16}H_{12}N$	218.0970

`

	ENA		ENA		EBA
	FIVI		<u>r IVI</u>		FIVI
C ₁₇ H ₁₄	218.1096	C ₁₃ H ₅ N ₃ O	219.0433	$C_{11}H_{14}N_{3}O_{2}$	220.1087
C ₁₇ N	218.0031	$C_{13}H_{7}N_{4}$	219.0672	$C_{11}H_{16}N_4O$	220.1325
C ₁₈ H ₂	218.0157	$C_{14}H_{19}O_2$	219.1385	$C_{11}N_4O_2$	220.0022
219		$C_{14}H_{3}O_{3}$	219.0082	$C_{12}H_{12}O_{4}$	220.0735
C ₉ H ₁₉ N ₂ O ₄	219.1345	$C_{14}H_{21}NO$	219.1624	$C_{12}H_{14}NO_3$	220.0974
$C_9H_{21}N_3O_3$	219.1584	$C_{14}H_5NO_2$	219.0320	$C_{12}H_{16}N_2O_2$	220.1213
$C_9H_{23}N_4O_2$	219.1822	$C_{14}H_{23}N_2$	219.1863	$C_{12}N_{2}O_{3}$	219.9909
C ₁₀ H ₂₁ NO ₄	219.1471	$C_{14}H_7N_2O$	219.0559	C ₁₂ H ₁₈ N ₃ O	220.1451
C ₁₀ H ₂₃ N ₂ O ₃	219.1710	C ₁₄ H ₉ N ₃	219.0798	$C_{12}H_2N_3O_2$	220.0147
C ₁₀ H ₇ N ₂ O ₄	219.0406	C ₁₅ H ₂₃ O	219.1750	$C_{12}H_{20}N_{4}$	220.1690
C ₁₀ H ₂₅ N ₃ O ₂	219.1948	$C_{15}H_7O_2$	219.0446	C ₁₂ H ₄ N ₄ O	220.0386
C ₁₀ H ₉ N ₃ O ₃	219.0644	C ₁₅ H ₂₅ N	219.1988	C ₁₃ H ₁₆ O ₃	220.1100
C ₁₀ H ₁₁ N ₄ O ₂	219.0883	C ₁₅ H ₉ NO	219.0684	C ₁₃ O ₄	219.9796
C ₁₁ H ₂₃ O ₄	219.1597	$C_{15}H_{11}N_{2}$	219.0923	C ₁₂ H ₁₈ NO ₂	220.1338
$C_{11}H_{25}NO_3$	219.1835	C ₁₆ H ₂₇	219.2114	C ₁₃ H ₂ NO ₃	220.0034
C ₁₁ H ₉ NO ₄	219.0532	C ₁₆ H ₁₁ O	219.0810	C ₁₃ H ₂₀ N ₂ O	220.1577
C ₁₁ H ₁₁ N ₂ O ₃	219.0770	C ₁₆ H ₁₃ N	219.1049	C ₁₃ H ₄ N ₂ O ₂	220.0273
C ₁₁ H ₁₃ N ₃ O ₂	219.1009	C ₁₇ H ₁₅	219.1174	C ₁₃ H ₂₂ N ₃	220.1815
C ₁₁ H ₁₅ N ₄ o	219.1247	C ₁₇ HN	219.0109	C ₁₃ H ₆ N ₃ O	220.0511
C ₁₂ H ₁₁ O ₄	219.0657	C ₁₈ H ₃	219.0235	C ₁₃ H ₈ N ₄	220.0750
C ₁₂ H ₁₃ NO ₃	219.0896	220		$C_{14}H_{20}O_{2}$	220.1464
C ₁₂ H ₁₅ N ₂ O ₂	219.1134	C ₉ H ₂₀ N ₂ O ₄	220.1424	$C_{14}H_4O_3$	220.0160
$C_{12}H_{17}N_{3}O$	219.1373	$C_{9}H_{22}N_{3}O_{3}$	220.1662	C ₁₄ H ₂₂ NO	220.1702
$C_{12}HN_{3}O_{2}$	219.0069	$C_9H_{24}N_4O_2$	220.1901	C ₁₄ H ₆ NO ₂	220.0399
C ₁₂ H ₉ N ₄	219.1611	C ₁₀ H ₂₂ NO ₄	220.1549	$C_{14}H_{24}N_{2}$	220.1941
C ₁₂ H ₃ N ₄ O	219.0308	$C_{10}H_{24}N_{2}O_{3}$	220.1788	$C_{14}H_8N_2O$	220.0637
C ₁₃ H ₁₅ O ₃	219.1021	$C_{10}H_{8}N_{2}O_{4}$	220.0484	$C_{14}H_{10}N_{3}$	220.0876
C ₁₃ H ₁₇ NO ₂	219.1260	C ₁₀ H ₁₀ N ₃ O ₃	220.0723	C ₁₅ H ₂₄ O	220.1828
C ₁₃ HNO ₃	218.9956	$C_{10}H_{12}N_4O_2$	220.0961	$C_{15}H_8O_2$	220.0524
C ₁₃ H ₁₉ N ₂ O	219.1498	$C_{11}H_{24}O_4$	220.1675	C ₁₅ H ₂₆ N	220.2067
$C_{13}H_3N_2O_2$	219.0195	C ₁₁ H ₁₀ NO ₄	220.0610	C ₁₅ H ₁₀ NO	220.0763
C ₁₃ H ₂₁ N ₃	219.1737	C ₁₁ H ₁₂ N ₂ O ₃	220.0848	$C_{15}H_{12}N_{2}$	220.1001

	FM		EM		EM
	1.141		£.1A1		1, 141
C ₁₆ H ₂₈	220.2192	C ₁₃ H ₂₁ N ₂ O	221.1655	$C_{11}H_{16}N_{3}O_{2}$	222.1244
C ₁₆ H ₁₂ O	220.0888	$C_{13}H_5N_2O_2$	221.0351	$C_{11}N_3O_3$	221.9940
C ₁₆ H ₁₄ N	220.1127	$C_{13}H_{23}N_{3}$	221.1894	$C_{11}H_{18}N_4O$	222.1482
C ₁₆ N ₂	220.0062	C ₁₃ H ₇ N ₃ O	221.0590	$C_{11}H_2N_4O_2$	222.0178
C ₁₇ H ₁₆	220.1253	$C_{13}H_{9}N_{4}$	221.0829	C ₁₂ H ₁₄ O ₄	222.0892
C ₁₇ O	219.9949	$C_{14}H_{21}O_{2}$	221.1542	$C_{12}H_{16}NO_3$	222.1131
C ₁₇ H ₂ N	220.0187	$C_{14}H_5O_3$	221.0238	C ₁₂ NO ₄	221.9827
C ₁₈ H ₄	220.0313	$C_{14}H_{23}NO$	221.1781	$C_{12}H_{18}N_2O_2$	222.1369
221		$C_{14}H_7NO_2$	221.0477	$C_{12}H_2N_2O_3$	222.0065
C ₉ H ₂₁ N ₂ O ₄	221.1502	$C_{14}H_{25}N_{2}$	221.2019	C ₁₂ H ₂₀ N ₃ O	222.1608
C ₉ H ₂₃ N ₃ O ₃	221.1741	$C_{14}H_9N_2O$	221.0715	$C_{12}H_4N_3O_2$	222.0304
C ₁₀ H ₂₃ NO ₄	221.1628	$C_{14}H_{11}N_{3}$	221.0954	$C_{12}H_{22}N_{4}$	222.1846
C ₁₀ H ₉ N ₂ O ₄	221.0563	C ₁₅ H ₂₅ O	221.1906	$C_{12}H_6N_4O$	222.0542
C ₁₀ H ₁₁ N ₃ O ₃	221.0801	C ₁₅ H ₉ O ₂	221.0603	$C_{13}H_{18}O_{3}$	222.1256
C ₁₀ H ₁₃ N ₄ O ₂	221.1040	C ₁₅ H ₂₇ N	221.2145	C ₁₃ H ₂ O ₄	221.9953
C ₁₁ H ₁₁ NO ₄	221.0688	C ₁₅ H ₁₁ NO	221.0841	C ₁₃ H ₂₀ NO ₂	222.1495
C ₁₁ H ₁₃ N ₂ O ₃	221.0927	$C_{15}H_{13}N_{2}$	221.1080	C ₁₃ H ₄ NO ₃	222.0191
C ₁₁ H ₁₅ N ₃ O ₂	221.1165	C ₁₆ H ₂₉	221.2270	C ₁₃ H ₂₂ N ₂ O	222.1733
C ₁₁ H ₁₇ N ₄ O	221.1404	C ₁₆ H ₁₃ O	221.0967	$C_{13}H_6N_2O_2$	222.0429
$C_{11}HN_4O_2$	221.0100	C ₁₆ H ₁₅ N	221.1205	C ₁₃ H ₂₄ N ₃	222.1972
C ₁₂ H ₁₃ O ₄	221.0814	C ₁₆ HN ₂	221.0140	C ₁₃ H ₈ N ₃ O	222.0668
C ₁₂ H ₁₅ NO ₃	221.1052	C ₁₇ H ₁₇	221.1331	C ₁₃ H ₁₀ N ₄	222.0907
C ₁₂ H ₁₇ N ₂ O ₂	221.1291	C ₁₇ HO	221.0027	$C_{14}H_{22}O_{2}$	222.1620
C ₁₂ HN ₂ O ₃	220.9987	C ₁₇ H ₃ N	221.0266	$C_{14}H_6O_3$	222.0317
C ₁₂ H ₁₉ N ₃ O	221.1529	C ₁₈ H ₅	221.0391	C ₁₄ H ₂₄ NO	222.1859
C ₁₂ H ₃ N ₃ O ₂	221.0226	222		$C_{14}H_8NO_2$	222.0555
$C_{12}H_{21}N_{4}$	221.1768	$C_{9}H_{22}N_{2}O_{4}$	222.1580	$C_{14}H_{26}N_{2}$	222.2098
C ₁₂ H ₅ N ₄ O	221.0464	C ₁₀ H ₁₀ N ₂ O ₄	222.0641	$C_{14}H_{10}N_{2}O$	222.0794
C ₁₃ H ₁₇ O ₃	221.1178	C ₁₀ H ₁₂ N ₃ O ₃	222.0879	$C_{14}H_{12}N_{3}$	222.1032
C ₁₃ HO ₄	220.9874	$C_{10}H_{14}N_4O_2$	222.1118	C ₁₅ H ₂₆ O	222.1985
$C_{13}H_{19}NO_{2}$	221.1416	$C_{11}H_{12}NO_4$	222.0766	C ₁₅ H ₁₀ O ₂	222.0681
C ₁₃ H ₃ NO ₃	221.0113	$C_{11}H_{14}N_{2}O_{3}$	222.1005	$C_{15}H_{28}N$	222.2223

	FM		FM		FM
C ₁₅ H ₁ ,NO	222.0919	C ₁₃ H ₃ O ₄	223.0031	C ₁₀ H ₁₄ N ₃ O ₃	224.1036
$C_{15}H_{14}N_{2}$	222.1158	C ₁₃ H ₂₁ NO,	223.1573	$C_{10}H_{16}N_4O_2$	224.1275
C ₁₅ N ₃	222.0093	$C_{13}H_5NO_3$	223.0269	$C_{11}H_{14}NO_4$	224.0923
$C_{16}H_{30}$	222.2349	C ₁₃ H ₂₃ N ₂ O	223.1811	$C_{11}H_{16}N_{2}O_{3}$	224.1162
C ₁₆ H ₁₄ O	222.1045	C ₁₃ H ₇ N ₂ O ₂	223.0508	$C_{11}N_2O_4$	223.9858
C ₁₆ H ₁₆ N	222.1284	$C_{13}H_{25}N_{3}$	223.2050	$C_{11}H_{18}N_{3}O_{2}$	224.1400
C ₁₆ NO	221.9980	C ₁₃ H ₉ N ₃ O	223.0746	$C_{11}H_2N_3O_3$	224.0096
$C_{16}H_2N_2$	222.0218	$C_{13}H_{11}N_4$	223.0985	$C_{11}H_{20}N_4O$	224.1639
C ₁₇ H ₁₈	222.1409	$C_{14}H_{23}O_{2}$	223.1699	$C_{11}H_4N_4O_2$	224.0335
C ₁₇ H ₂ O	222.0106	$C_{14}H_7O_3$	223.0395	$C_{12}H_{16}O_{4}$	224.1049
C ₁₇ H ₄ N	222.0344	C ₁₄ H ₂₅ NO	223.1937	$C_{12}H_{18}NO_3$	224.1287
C ₁₈ H ₆	222.0470	C ₁₄ H ₉ NO ₂	223.0634	C ₁₂ H ₂ NO ₄	223.9983
223		$C_{14}H_{27}N_{2}$	223.2176	$C_{12}H_{20}N_2O_2$	224.1526
C ₁₀ H ₁₁ N ₂ O ₄	223.0719	$C_{14}H_{11}N_2O$	223.0872	$C_{12}H_4N_2O_3$	224.0222
C ₁₀ H ₁₃ N ₃ O ₃	223.0958	$C_{14}H_{13}N_{3}$	223.1111	C ₁₂ H ₂₂ N ₃ O	224.1764
C ₁₀ H ₁₅ N ₄ O ₂	223.1196	C ₁₅ H ₂₇ O	223.2063	$C_{12}H_6N_3O_2$	224.0460
$C_{11}H_{13}NO_{4}$	223.0845	C ₁₅ H ₁₁ O ₂	223.0759	$C_{12}H_{24}N_{4}$	224.2003
C ₁₁ H ₁₅ N ₂ O ₃	223.1083	$C_{15}H_{29}N$	223.2301	$C_{12}H_8N_4O$	224.0699
C ₁₁ H ₁₇ N ₃ O ₂	223.1322	C ₁₅ H ₁₃ NO	223.0998	$C_{13}H_{20}O_{3}$	224.1413
C ₁₁ HN ₃ O ₃	223.0018	C ₁₅ H ₁₅ N ₂	223.1236	$C_{13}H_4O_4$	224.0109
$C_{11}H_{19}N_4O$	223.1560	C ₁₅ HN ₃	223.0171	$C_{13}H_{22}NO_{2}$	224.1651
$C_{11}H_3N_4O_2$	223.0257	C ₁₆ H ₃₁	223.2427	C ₁₃ H ₆ NO ₃	224.0348
C ₁₂ H ₁₅ O ₄	223.0970	C ₁₆ H ₁₅ O	223.1123	$C_{13}H_{24}N_{2}O$	224.1890
C ₁₂ H ₁₇ NO ₃	223.1209	$C_{16}H_{17}N$	223.1362	$C_{13}H_8N_2O_2$	224.0586
C ₁₂ HNO ₄	222.9905	C ₁₆ HNO	223.0058	$C_{13}H_{26}N_{3}$	224.2129
C ₁₂ H ₁₉ N ₂ O ₂	223.1447	$C_{16}H_{3}N_{2}$	223.0297	$C_{13}H_{10}N_{3}O$	224.0825
C ₁₂ H ₃ N ₂ O ₃	223.0144	C ₁₇ H ₁₉	223.1488	$C_{13}H_{12}N_4$	224.1063
C ₁₂ H ₂₁ N ₃ O	223.1686	C ₁₇ H ₃ O	223.0184	$C_{14}H_{24}O_{2}$	224.1777
$C_{12}H_{5}N_{3}O_{2}$	223.0382	C ₁₇ H ₅ N	223.0422	$C_{14}H_8O_3$	224.0473
C ₁₂ H ₂₃ N ₄	223.1925	$C_{18}H_7$	223.0548	C ₁₄ H ₂₆ NO	224.2015
C ₁₂ H ₇ N ₄ O	223.1621	224		$C_{14}H_{10}NO_{2}$	224.0712
C ₁₃ H ₁₉ O ₃	223.1334	$C_{10}H_{12}N_{2}O_{4}$	224.0797	$C_{14}H_{28}N_2$	224.2254

•

	FM		FM	· · · · · · · · · · · · · · · · · · ·	FM
C ₁₄ H ₁₂ N ₂ O	224.0950	C ₁₂ H ₁₇ O ₄	225.1127	C ₁₅ H ₃ N ₃	225.0328
$C_{14}H_{14}N_3$	224.1189	$C_{1,H_{19}}NO_{3}$	225.1365	C ₁₆ H ₃₃	225.2584
$C_{14}N_4$	224.0124	C ₁₂ H ₃ NO ₄	225.0062	C ₁₆ H ₁₇ O	225.1280
C ₁₅ H ₂₈ O	224.2141	C ₁₂ H ₂₁ N ₂ O ₂	225.1604	C ₁₆ HO ₂	224.9976
$C_{15}H_{12}O_{2}$	224.0837	$C_{12}H_5N_2O_3$	225.0300	C ₁₆ H ₁₉ N	225.1519
C ₁₅ H ₃₀ N	224.2380	$C_{12}H_{23}N_{3}O$	225.1842	C ₁₆ H ₃ NO	225.0215
C ₁₅ H ₁₄ NO	224.1076	$C_{12}H_7N_3O_2$	225.0539	$C_{16}H_5N_2$	225.0453
$C_{15}H_{16}N_{2}$	224.1315	$C_{12}H_{25}N_{4}$	225.2081	C ₁₇ H ₂₁	225.1644
C ₁₅ N ₂ O	224.0011	C ₁₂ H ₉ N ₄ O	225.0777	C ₁₇ H ₅ O	225.0340
$C_{15}H_2N_3$	224.0249	$C_{13}H_{21}O_{3}$	225.1491	C ₁₇ H ₇ N	225.0579
C ₁₆ H ₃₂	224.2505	C ₁₃ H ₅ O ₄	225.0187	C ₁₈ H ₉	225.0705
C ₁₆ H ₁₆ O	224.1202	$C_{13}H_{23}NO_{2}$	225.1730	226	
C ₁₆ O ₂	223.9898	C ₁₃ H ₇ NO ₃	225.0426	$C_{10}H_{14}N_{2}O_{4}$	226.0954
C ₁₆ H ₁₈ N	224.1440	C ₁₃ H ₂₅ N ₂ O	225.1968	C ₁₀ H ₁₆ N ₃ O ₃	226.1193
C ₁₆ H ₂ NO	224.0136	$C_{13}H_{9}N_{2}O_{2}$	225.0664	C ₁₀ H ₁₈ N ₄ O ₂	226.1431
$C_{16}H_{4}N_{2}$	224.0375	C ₁₃ H ₂₇ N ₃	225.2207	$C_{11}H_{16}NO_4$	226.1080
C ₁₇ H ₂₀	224.1566	C ₁₃ H ₁₁ N ₃ O	225.0903	$C_{11}H_{18}N_{2}O_{3}$	226.1318
C ₁₇ H ₄ O	224.0262	C ₁₃ H ₁₃ N ₄	225.1142	$C_{11}H_2N_2O_4$	226.0014
C ₁₇ H ₆ N	224.0501	$C_{14}H_{25}O_{2}$	225.1855	$C_{11}H_{20}N_{3}O_{2}$	226.1557
C ₁₈ H ₈	224.0626	C ₁₄ H ₉ O ₃	225.0552	$C_{11}H_4N_3O_3$	226.0253
225		C ₁₄ H ₂₇ NO	225.2094	$C_{11}H_{22}N_4O$	226.1795
C ₁₀ H ₁₃ N ₂ O ₄	225.0876	$C_{14}H_{11}NO_2$	225.0790	$C_{11}H_6N_4O_2$	226.0491
C ₁₀ H ₁₅ N ₃ O ₃	225.1114	$C_{14}H_{29}N_{2}$	225.2332	$C_{12}H_{18}O_{4}$	226.1205
C ₁₀ H ₁₇ N ₄ O ₂	225.1353	$C_{14}H_{13}N_{2}O$	225.1029	$C_{12}H_{20}NO_{3}$	226.1444
$C_{11}H_{15}NO_4$	225.1001	$C_{14}H_{15}N_{3}$	225.1267	$C_{12}H_4NO_4$	226.0140
C ₁₁ H ₁₇ N ₂ O ₃	225.1240	C ₁₄ HN ₄	225.0202	$C_{12}H_{22}N_2O_2$	226.1682
C ₁₁ HN ₂ O ₄	224.9936	C ₁₅ H ₂₉ O	225.2219	$C_{12}H_6N_2O_3$	226.0379
$C_{11}H_{19}N_{3}O$	225.1478	C ₁₅ H ₁₃ O ₂	225.0916	$C_{12}H_{24}N_{3}O$	226.1929
C ₁₁ H ₃ N ₃ O ₃	225.0175	C ₁₅ H ₃₁ N	225.2458	$C_{12}H_8N_3O_2$	226.0617
$C_{11}H_{21}N_{4}O$	225.1717	C ₁₅ H ₁₅ NO	225.1154	$C_{12}H_{26}N_4$	226.2160
C ₁₁ H ₅ N ₄ O ₂	225.0413	$C_{15}H_{17}N_{2}$	225.1393	$C_{12}H_{10}N_{4}O$	226.0856
C ₁₁ HN ₂ O ₄	224.9936	C ₁₅ HN ₂ O	225.0089	$C_{13}H_{22}O_{3}$	226.1569

	FM		FM		FM
$\overline{C_{13}H_6O_4}$	226.0266	C ₁₇ H ₆ O	226.0419	C ₁₄ H ₂₇ O ₂	227.2012
$C_{13}H_{24}NO_{2}$	226.1808	$C_{17}H_8N$	226.0657	$C_{14}H_{11}O_{3}$	227.0708
$C_{13}H_8NO_3$	226.0504	$C_{18}H_{10}$	226.0783	C ₁₄ H ₂₉ NO	227.2250
C ₁₃ H ₂₆ N ₂ O	226.2046	227		C ₁₄ H ₁₃ NO,	227.0947
C ₁₃ H ₁₀ N ₂ O ₂	226.0743	C ₁₀ H ₁₅ N ₂ O ₄	227.1032	$C_{14}H_{31}N_{2}$	227.2489
$C_{13}H_{28}N_{3}$	226.2285	$C_{10}H_{17}N_{3}O_{3}$	227.1271	$C_{14}H_{15}N_{2}O$	227.1185
C ₁₃ H ₁₂ N ₃ O	226.0981	$C_{10}H_{19}N_4O_2$	227.1509	$C_{14}H_{17}N_{3}$	227.1424
$C_{13}H_{14}N_{4}$	226.1220	C ₁₁ H ₁₇ NO ₄	227.1158	C ₁₄ HN ₃ O	227.0120
$C_{14}H_{26}O_2$	226.1934	$C_{11}H_{19}N_2O_3$	227.1396	$C_{14}H_3N_4$	227.0359
C ₁₄ H ₁₀ O ₃	226.0630	$C_{11}H_3N_2O_4$	227.0093	C ₁₅ H ₃₁ O	227.2376
C ₁₄ H ₂₈ NO	226.2172	$C_{11}H_{21}N_{3}O_{2}$	227.1635	C ₁₅ H ₁₅ O ₂	227.1072
$C_{14}H_{12}NO_2$	226.0868	C ₁₁ H ₅ N ₃ O ₃	227.0331	C ₁₅ H ₃₃ N	227.2615
$C_{14}H_{30}N_{2}$	226.2411	$C_{11}H_{23}N_{4}O$	227.1873	C ₁₅ H ₁₇ NO	227.1311
$C_{14}N_{14}N_{2}O$	226.1107	$C_{11}H_7N_4O_2$	227.0570	C ₁₅ HNO ₂	227.0007
$C_{14}H_{16}N_{3}$	226.1346	$C_{12}H_{19}O_{4}$	227.1284	$C_{15}H_{19}N_2$	227.1549
C ₁₄ N ₃ O	226.0042	$C_{12}H_{21}NO_3$	227.1522	C ₁₅ H ₃ N ₂ O	227.0246
$C_{14}H_2N_4$	226.0280	C ₁₂ H ₅ NO ₄	227.0218	C ₁₅ H ₅ N ₃	227.0484
C ₁₅ H ₃₀ O	226.2298	C ₁₂ H ₂₃ N ₂ O ₂	227.1761	C ₁₆ H ₁₉ O	227.1436
$C_{15}H_{14}O_{2}$	226.0994	C ₁₂ H ₇ N ₂ O ₃	227.0457	$C_{16}H_3O_2$	227.0133
C ₁₅ H ₃₂ N	226.2536	C ₁₂ H ₂₅ N ₃ O	227.1999	C ₁₆ H ₂₁ N	227.1675
C ₁₅ H ₁₆ NO	226.1233	$C_{12}H_9N_3O_2$	227.0695	C ₁₆ H ₅ NO	227.0371
C ₁₅ NO ₂	225.9929	$C_{12}H_{27}N_{4}$	227.2238	$C_{16}H_7N_2$	227.0610
$C_{15}H_{18}N_{2}$	226.1471	C ₁₂ H ₁₁ N ₄ O	227.0934	C ₁₇ H ₂₃	227.1801
C ₁₅ H ₂ N ₂ O	226.0167	C ₁₃ H ₂₃ O ₃	227.1648	C ₁₇ H ₇ O	227.0497
$C_{15}H_4N_3$	226.0406	C ₁₃ H ₇ O ₄	227.0344	C ₁₇ H ₉ N	227.0736
C ₁₆ H ₃₄	226.2662	$C_{13}H_{25}NO_2$	227.1886	C ₁₈ H ₁₁	227.0861
C ₁₆ H ₁₈ O	226.1358	C ₁₃ H ₉ NO ₃	227.0583	228	
$C_{16}H_2O_2$	226.0054	C ₁₃ H ₂₇ N ₂ O	227.2125	C ₁₀ H ₁₆ N ₂ O ₄	228.1111
C ₁₆ H ₂₀ N	226.1597	C ₁₃ H ₁₁ N ₂ O ₂	227.0821	C ₁₀ H ₁₈ N ₃ O ₃	228.1349
C ₁₆ H ₄ NO	226.0293	C ₁₃ H ₂₉ N ₃	227.2363	C ₁₀ H ₂₀ N ₄ O ₂	228.1588
$C_{16}H_{6}N_{2}$	226.0532	C ₁₃ H ₁₃ N ₃ O	227.1060	C ₁₁ H ₁₈ NO ₄	228.1236
C ₁₇ H ₂₂	226.1722	C ₁₃ H ₁₅ N ₄	227.1298	$C_{11}H_{20}N_{2}O_{3}$	228.1475

	FM		FM		FM
$C_{11}H_4N_2O_4$	228.0171	C ₁₄ H ₂ N ₃ O	228.0198	$C_{12}H_{23}NO_{3}$	229.1679
$C_{11}H_{22}N_{3}O_{2}$	228.1713	$C_{14}H_4N_4$	228.0437	$C_{12}H_7NO_4$	229.0375
$C_{11}H_6N_3O_3$	228.0410	C ₁₅ H ₃₂ O	228.2454	$C_{12}H_{25}N_{2}O_{2}$	229.1917
$C_{11}H_{24}N_{4}O$	228.1952	$C_{15}H_{16}O_{2}$	228.1151	$C_{12}H_{9}N_{2}O_{3}$	229.0614
$C_{11}H_8N_4O_2$	228.0648	C ₁₅ O ₃	227.9847	C ₁₂ H ₂₇ N ₃ O	229.2156
$C_{12}H_{20}O_{4}$	228.1362	C ₁₅ H ₁₈ NO	228.1389	$C_{12}H_{11}N_{3}O_{2}$	229.0852
$C_{12}H_{22}NO_{3}$	228.1600	C ₁₅ H ₂ NO ₂	228.0085	C ₁₂ H ₂₉ N ₄	229.2394
C ₁₂ H ₆ NO ₄	228.0297	$C_{15}H_{20}N_{2}$	228.1628	C ₁₂ H ₁₃ N ₄ O	229.1091
$C_{12}H_{24}N_{2}O_{2}$	228.1839	$C_{15}H_4N_2O$	228.0324	C ₁₃ H ₂₅ O ₃	229.1804
$C_{12}H_8N_2O_3$	228.0535	$C_{15}H_6N_3$	228.0563	C ₁₃ H ₉ O ₄	229.0501
C ₁₂ H ₂₆ N ₃ O	228.2077	C ₁₆ H ₂₀ O	228.1515	C ₁₃ H ₂₇ NO ₂	229.2043
C ₁₂ H ₁₀ N ₃ O ₂	228.0774	$C_{16}H_4O_2$	228.0211	C ₁₃ H ₁₁ NO ₃	229.0739
C ₁₂ H ₂₈ N ₄	228.2316	$C_{16}H_{22}N$	228.1753	C ₁₃ H ₂₉ N ₂ O	229.2281
C ₁₂ H ₁₂ N ₄ O	228.1012	C ₁₆ H ₆ NO	228.0449	C ₁₃ H ₁₃ N ₂ O ₂	229.0978
C ₁₃ H ₂₄ O ₃	228.1726	$C_{16}H_{8}N_{2}$	228.0688	C ₁₃ H ₃₁ N ₃	229.2520
C ₁₃ H ₈ O ₄	228.0422	C ₁₇ H ₂₄	228.1879	C ₁₃ H ₁₅ N ₃ O	229.1216
$C_{13}H_{26}NO_2$	228.1965	C ₁₇ H ₈ O	228.0575	C ₁₃ H ₁₇ N ₄	229.1455
C ₁₃ H ₁₀ NO ₃	228.0661	C ₁₇ H ₁₀ N	228.0314	C ₁₃ HN ₄ O	229.0151
C ₁₃ H ₂₈ N ₂ O	228.2203	C ₁₈ H ₁₂	228.0939	$C_{14}H_{29}O_{2}$	229.2168
C ₁₃ H ₁₂ N ₂ O ₂	228.0899	C ₁₉	228.0000	C ₁₄ H ₁₃ O ₃	229.0865
C ₁₃ H ₃₀ N ₃	228.2442	229		C ₁₄ H ₃₁ NO	229.2407
C ₁₃ H ₁₄ N ₃ O	228.1138	C ₁₀ H ₁₇ N ₂ O ₄	229.1189	$C_{14}H_{15}NO_2$	229.1103
$C_{13}H_{16}N_{4}$	228.1377	C ₁₀ H ₁₉ N ₃ O ₃	229.1427	C ₁₄ H ₁₇ N ₂ O	229.1342
C ₁₃ H ₄ O	228.0073	$C_{10}H_{21}N_4O_2$	229.1666	C ₁₄ HN ₂ O ₂	229.0038
$C_{14}H_{28}O_{2}$	228.2090	C ₁₁ H ₁₉ NO ₄	229.1315	$C_{14}H_{19}N_{3}$	229.1580
$C_{14}H_{12}O_{3}$	228.0786	$C_{11}H_{21}N_{2}O_{3}$	229.1553	C ₁₄ H ₃ N ₃ O	229.0277
C ₁₄ H ₃₀ NO	228.2329	C ₁₁ H ₅ N ₂ O ₄	229.0249	C ₁₄ H ₅ N ₄	229.0515
$C_{14}H_{14}NO_2$	228.1025	C ₁₁ H ₂₃ N ₃ O ₂	229.1791	C ₁₅ H ₁₇ O ₂	229.1229
$C_{14}H_{32}N_{2}$	228.2567	C ₁₁ H ₇ N ₃ O ₃	229.0488	C ₁₅ HO ₃	228.9925
$C_{14}H_{16}N_{2}O$	228.1264	C ₁₁ H ₂₅ N ₄ O	229.2030	C ₁₅ H ₁₉ NO	229.1467
$C_{14}N_2O_2$	227.9960	$C_{11}H_9N_4O_2$	229.0726	C ₁₅ H ₃ NO ₂	229.0164
$C_{14}H_{18}N_{3}$	228.1502	C ₁₂ H ₂₁ O ₄	229.1440	$C_{15}H_{21}N_{2}$	229.1706
	FM		FM		FM
---	----------	--	----------	---	----------
C, H, N, O	229.0402	C ₁₂ H ₂₆ O ₂	230.1883	C ₁₇ H ₁₀ O	230.0732
C ₁₅ H ₂ N ₃	229.0641	$C_{13}H_{10}O_{4}$	230.0579	C ₁₇ H ₁₂ N	230.0970
C, H, O	229.1593	C ₁₃ H ₂₈ NO,	230.2121	$C_{18}H_{14}$	230.1096
C ₁₆ H ₂ O,	229.0289	C ₁₃ H ₁₂ NO ₃	230.0817	C ₁₈ N	230.0031
C ₁₆ H ₂₃ N	229.1832	C ₁₃ H ₃₀ N ₂ O	230.2360	C ₁₉ H,	230.0157
C ₁₆ H ₂ NO	229.0528	C ₁₃ H ₁₄ N,O,	230.1056	231	
C ₁₆ H ₉ N,	229.0767	C ₁₃ H ₁₆ N ₃ O	230.1295	C ₁₀ H ₁₉ N ₂ O ₄	231.1345
C ₁₇ H ₂₅	229.1957	C ₁₃ N ₃ O ₂	229.9991	C ₁₀ H ₂₁ N ₃ O ₃	231.1584
C ₁₇ H ₁₁ N	229.0892	$C_{13}H_{18}N_4$	230.1533	$C_{10}H_{23}N_4O_2$	231.1822
C ₁₇ H ₀ O	229.0653	C ₁₃ H ₂ N ₄ O	230.0229	$C_1H_2NO_4$	231.1471
C18H13	229.1018	C ₁₄ H ₃₀ O,	230.2247	C ₁₁ H ₂₃ N ₂ O ₃	231.1710
C ₁₉ H	229.0078	$C_{14}H_{14}O_3$	230.0943	C ₁₁ H ₇ N ₂ O ₄	231.0406
230		$C_{14}H_{16}NO_{7}$	230.1182	$C_{11}H_{25}N_{3}O_{2}$	231.1948
C ₁₀ H ₁₈ N ₂ O ₄	230.1267	C ₁₄ NO ₃	229.9878	$C_1H_9N_3O_3$	231.0644
$C_{10}H_{20}N_{3}O_{3}$	230.1506	C ₁₄ H ₁₈ N ₂ O	230.1420	$C_{11}H_{27}N_{4}O$	231.2187
$C_{10}H_{22}N_4O_2$	230.1744	$C_{14}H_2N_2O_2$	230.0116	$C_{11}H_{11}N_4O_2$	231.0883
$C_{11}H_{20}NO_{4}$	230.1393	$C_{14}H_{20}N_{3}$	230.1659	C ₁₂ H ₂₃ O ₄	231.1597
$C_{11}H_{22}N_{2}O_{3}$	230.1631	C ₁₄ H ₄ N ₃ O	230.0355	C ₁₂ H ₂₅ NO ₃	231.1835
$C_{11}H_6N_2O_4$	230.0328	C ₁₄ H ₆ N ₄	230.0594	C ₁₂ H ₉ NO ₄	231.0532
$C_{11}H_{24}N_{3}O_{2}$	230.1870	$C_{15}H_{18}O_2$	230.1307	C ₁₂ H ₂₇ N ₂ O ₂	231.2074
$C_{11}H_8N_3O_3$	230.0566	$C_{15}H_2O_3$	230.0003	C ₁₂ H ₁₁ N ₂ O ₃	231.0770
$C_{11}H_{26}N_4O$	230.2108	C ₁₅ H ₂₀ NO	230.1546	C ₁₂ H ₂₉ N ₃ O	231.2312
$C_{11}H_{10}N_4O_2$	230.0805	C ₁₅ H ₄ NO ₂	230.0242	C ₁₂ H ₁₃ N ₃ O ₂	231.1009
C ₁₂ H ₂₂ O ₄	230.1518	$C_{15}H_{22}N_{2}$	230.1784	C ₁₂ H ₁₅ N ₄ O	231.1247
C ₁₂ H ₂₄ NO ₃	230.1757	C ₁₅ H ₆ N ₂ O	230.0480	C ₁₃ H ₂₇ O ₃	231.1961
C ₁₂ H ₈ NO ₄	230.0453	C ₁₅ H ₈ N ₃	230.0719	C ₁₃ H ₁₁ O ₄	231.0657
$C_{12}H_{26}N_2O_2$	230.1996	C ₁₆ H ₂₂ O	230.1671	$C_{13}H_{29}NO_{2}$	231.2199
C ₁₂ H ₁₀ N ₂ O ₃	230.0692	C ₁₆ H ₆ O ₂	230.0368	C ₁₃ H ₁₃ NO ₃	231.0896
C ₁₂ H ₂₈ N ₃ O	230.2234	C ₁₆ H ₂₄ N	230.1910	C ₁₃ H ₁₅ N ₂ O ₂	231.1134
$C_{12}H_{12}N_{3}O_{2}$	230.0930	C ₁₆ H ₈ NO	230.0606	C ₁₃ H ₁₇ N ₃ O	231.1373
$C_{12}H_{30}N_4$	230.2473	$C_{16}H_{10}N_{2}$	230.0845	C ₁₃ HN ₃ O ₂	231.0069
C ₁₂ H ₁₄ N ₄ O	230.1169	C ₁₇ H ₂₆	230.2036	C' ₁₃ H ₁₉ N ₄	231.1611

	FM		FM		FM
C ₁₃ H ₃ N ₄ O	231.0308	$C_{11}H_{24}N_{2}O_{3}$	232.1788	C ₁₅ H ₂₀ O ₂	232.1464
$C_{14}H_{15}O_{3}$	231.1021	$C_{11}H_8N_2O_4$	232.0484	C ₁₅ H ₄ O ₃	232.0160
$C_{14}H_{17}NO_2$	231.1260	$C_{11}H_{26}N_{3}O_{2}$	232.2026	C ₁₅ H ₂₂ NO	232.1702
C ₁₄ HNO ₃	230.9956	$C_{11}H_{10}N_{3}O_{3}$	232.0723	C ₁₅ H ₆ NO ₂	232.0399
$C_{14}H_{19}N_{2}O$	231.1498	$C_{11}H_{28}N_{4}O$	232.2265	$C_{15}H_{24}N_{2}$	232.1941
$C_{14}H_3N_2O_2$	231.0195	$C_{11}H_{12}N_4O_2$	232.0961	C ₁₅ H ₈ N ₂ O	232.0637
$C_{14}H_{21}N_{3}$	231.1737	$C_{12}H_{24}O_{4}$	232.1675	C ₁₅ H ₁₀ N ₃	232.0876
$C_{14}H_5N_3O$	231.0433	$C_{12}H_{26}NO_3$	232.1914	$C_{16}H_{24}O$	232.1828
C ₁₄ H ₇ N ₄	231.0672	C ₁₂ H ₁₀ NO ₄	232.0610	C ₁₆ H ₈ O ₂	232.0524
C ₁₅ H ₁₉ O ₂	231.1385	$C_{12}H_{28}N_2O_2$	232.2152	$C_{16}H_{26}N$	232.2067
C ₁₅ H ₃ O ₃	231.0082	$C_{12}H_{12}N_{2}O_{3}$	232.0848	C ₁₆ H ₁₀ NO	232.0768
$C_{15}H_{21}NO$	231.1624	$C_{12}H_{14}N_{3}O_{2}$	232.1087	$C_{16}H_{12}N_{2}$	232.1001
C ₁₅ H ₅ NO ₂	231.0320	$C_{12}H_{16}N_{4}O$	232.1325	C ₁₇ H ₂₈	232.2192
$C_{15}H_{23}N_{2}$	231.1863	$C_{12}N_{4}O_{2}$	232.0022	C ₁₇ H ₁₂ O	232.0888
$C_{15}H_7N_2O$	231.0559	$C_{13}H_{28}O_{3}$	232.2039	$C_{17}H_{14}N$	232.1127
C ₁₅ H ₉ N ₃	231.0 798	$C_{13}H_{12}O_{4}$	232.0735	$C_{17}N_{2}$	232.0062
C ₁₆ H ₂₃ O	291.1750	$\mathbf{C}_{13}\mathbf{H}_{\mathbf{M}}\mathbf{NO}_{3}$	232.0974	$C_{18}H_{16}$	232.1253
C ₁₆ H ₇ O ₂	231.0446	$C_{13}H_{16}N_2O_2$	232.1213	C ₁₈ O	231.9949
C ₁₆ H ₂₅ N	231.1988	$C_{13}N_{2}O_{3}$	231.9909	$C_{18}H_2N$	232.0187
C ₁₆ H ₉ NO	231.0684	$C_{13}H_{18}N_{3}O$	232.1451	C ₁₉ H ₄	232.0313
C ₁₆ H ₁₁ N ₂	231.0923	$C_{13}H_2N_3O_2$	232.0147	233	
C ₁₇ H ₂₇	231.2114	$C_{13}H_{20}N_4$	232.1690	$C_{10}H_{21}N_{2}O_{4}$	233.1502
C ₁₇ H ₁₁ O	231.0810	$C_{13}H_4N_4O$	232.0386	$C_{10}H_{23}N_{3}O_{3}$	233.1741
C ₁₇ H ₁₃ N	231.1049	$C_{14}H_{16}O_{3}$	232.1100	$C_{10}H_{25}N_4O_2$	233.1979
C ₁₈ H ₁₅	231.1174	C ₁₄ O ₄	231.9796	$C_{11}H_{23}NO_{4}$	233.1628
C ₁₈ HN	231.0109	$C_{14}H_{18}NO_2$	232.1338	$C_{11}H_{25}N_2O_3$	233.1866
C ₁₉ H ₃	231.0235	$C_{14}H_2NO_3$	232.0034	$C_{11}H_9N_2O_4$	233.0563
232		$C_{14}H_{20}N_{2}O$	232.1577	$C_{11}H_{27}N_{3}O_{2}$	233.2105
C ₁₀ H ₂₀ N ₂ O ₄	232.1424	$C_{14}H_4N_2O_2$	232.0273	C ₁₁ H ₁₁ N ₃ O ₃	233.0801
$C_{10}H_{22}N_{3}O_{3}$	232.1662	$C_{14}H_{22}N_3$	232.1815	$C_{11}H_{13}N_4O_2$	233.1040
$C_{10}H_{24}N_4O_2$	232.1901	$C_{14}H_6N_3O$	232.0511	$C_{12}H_{25}O_{4}$	233.1753
$C_{11}H_{22}NO_4$	232.1549	$C_{14}H_8N_4$	232.0750	$C_{12}H_{27}NO_{3}$	233.1992

	FM	··· <u>·</u> ································	FM		FM
C, H, NO	233.0688	C ₁₆ H ₁₁ NO	233.0841	C ₁₂ H ₄ N ₂ O ₂	234.0304
$C_{1,2}H_{1,3}N_{2}O_{3}$	233.0927	$C_{16}H_{13}N_{2}$	233.1080	C ₁₃ H ₂₂ N ₄	234.1846
C ₁₂ H ₁₅ N ₃ O ₂	233.1165	C ₁₇ H ₂₉	233.2270	$C_{13}H_6N_4O$	234.0542
$C_{12}H_{17}N_{4}O$	233.1404	C ₁₇ H ₁₃ O	233.0967	$C_{14}H_{18}O_3$	234.1256
C_1 , HN_4O_2	233.0100	C ₁₇ H ₁₅ N	233.1205	C ₁₄ H ₂ O ₄	233.9953
C ₁₃ H ₁₃ O ₄	233.0814	C ₁₇ HN ₂	233.0140	$C_{14}H_{20}NO_{2}$	234.1495
C ₁₃ H ₁₅ NO ₃	233.1052	C ₁₈ H ₁₇	233.1331	$C_{14}H_4NO_3$	234.0191
C,,H,,N,O,	233.1291	C ₁₈ HO	233.0027	C ₁₄ H,,N,O	234.1733
C, HN, O,	232.9987	$C_{18}H_{3}N$	233.0266	$C_{14}H_6N_2O_2$	234.0429
C ₁₃ H ₁₉ N ₃ O	233.1529	C ₁₉ H ₅	233.0391	$C_{14}H_{24}N_{3}$	234.1972
$C_{13}H_{3}N_{3}O_{2}$	233.0226	234		C ₁₄ H ₈ N ₃ O	234.0668
$C_{13}H_{21}N_{4}$	233.1768	$C_{10}H_{22}N_{2}O_{4}$	234.1580	$C_{14}H_{10}N_{4}$	234.0907
C ₁₃ H ₅ N ₄ O	233.0464	$C_{10}H_{24}N_{3}O_{3}$	234.1819	$C_{15}H_{22}O_{2}$	234.1620
$C_{14}H_{17}O_{3}$	233.1178	$C_{10}H_{26}N_4O_2$	234.2057	$C_{15}H_6O_3$	234.0317
C ₁₄ HO ₄	232.9874	$C_{11}H_{24}NO_4$	234.1706	C ₁₅ H ₂₄ NO	234.1859
$C_{14}H_{19}NO_2$	233.1416	$C_{11}H_{26}N_{2}O_{3}$	234.1945	C ₁₅ H ₈ NO ₂	234.0555
C ₁₄ H ₃ NO ₃	233.0113	$C_{11}H_{10}N_{2}O_{4}$	234.0641	C ₁₅ H ₂₆ N ₂	234.2098
$C_{14}H_{21}N_{2}O$	233.1655	C ₁₁ H ₁₂ N ₃ O ₃	234.0879	C ₁₅ H ₁₀ N ₂ O	234.0794
$C_{14}H_5N_2O_2$	233.0351	$C_{11}H_{14}N_4O_2$	234.1118	$C_{15}H_{12}N_{3}$	234.1032
$C_{14}H_{23}N_{3}$	233.1894	$C_{12}H_{26}O_{4}$	234.1832	C ₁₆ H ₂₆ O	234.1985
C ₁₄ H ₇ N ₃ O	233.0590	$C_{12}H_{12}NO_4$	234.0766	C ₁₆ H ₁₀ O ₂	234.0681
C ₁₄ H ₉ N ₄	233.0829	$C_{12}H_{14}N_{2}O_{3}$	234.1005	C ₁₆ H ₂₈ N	234.2223
C ₁₅ H ₂₁ O ₂	233.1542	$C_{12}H_{16}N_{3}O_{2}$	234.1244	C ₁₆ H ₁₂ NO	234.0919
C ₁₅ H ₅ O ₃	233.0238	C ₁₂ N ₃ O ₃	233.9940	$C_{16}H_{14}N_{2}$	234.1158
C ₁₅ H ₂₃ NO	233.1781	C ₁₂ H ₁₈ N ₄ O	234.1482	C ₁₆ N ₃	234.0093
C ₁₅ H ₇ NO ₂	233.0477	$C_{12}H_2N_4O_2$	234.0178	C ₁₇ H ₃₀	234.2349
$C_{15}H_{25}N_{2}$	233.2019	C ₁₃ H ₁₄ O ₄	234.0892	C ₁₇ H ₁₄ O	234.1045
C ₁₅ H ₉ N ₂ O	233.0715	C ₁₃ H ₁₆ NO ₃	234.1131	C ₁₇ H ₁₆ N	234.1284
$C_{15}H_{11}N_{3}$	233.0954	C ₁₃ NO ₄	233.9827	C ₁₇ NO	233.9980
C ₁₆ H ₂₅ O	233.1906	$C_{13}H_{18}N_2O_2$	234.1369	$C_{17}H_2N_2$	234.0218
$C_{16}H_9O_2$	233.0603	$C_{13}H_2N_2O_3$	234.0065	C ₁₈ H ₁₈	234.1409
C ₁₆ H ₂₇ N	233.2145	C ₁₃ H ₂₀ N ₃ O	234.1608	C ₁₈ H ₂ O	234.0106

	FM		FM		FM
C ₁₈ H ₄ N	234.0344	$C_{14}H_{11}N_{4}$	235.0985	C ₁₂ H ₂ N ₃ O ₃	236.0096
$C_{19}H_6$	234.0470	$C_{15}H_{23}O_{2}$	235.1699	$C_{12}H_{20}N_{4}O$	236.1639
235		$C_{15}H_{7}O_{3}$	235.0395	$C_{12}H_4N_4O_2$	236.0335
$C_{10}H_{23}N_2O_4$	235.1659	C ₁₅ H ₂₅ NO	235.1937	C ₁₃ H ₁₆ O ₄	236.1049
C ₁₀ H ₂₅ N ₃ O ₃	235.1897	C ₁₅ H ₉ NO ₂	235.0634	$C_{13}H_{18}NO_3$	236.1287
$C_{11}H_{25}NO_4$	235.1784	$C_{15}H_{27}N_{2}$	235.2176	C ₁₃ H ₂ NO ₄	235.9983
$C_{11}H_{11}N_{2}O_{4}$	235.0719	C ₁₅ H ₁₁ N ₂ O	235.0872	$C_{13}H_{20}N_2O_2$	236.1526
C ₁₁ H ₁₃ N ₃ O ₃	235.0958	$C_{15}H_{13}N_{3}$	235.1111	$C_{13}H_4N_2O_3$	236.0222
$C_{11}H_{15}N_4O_2$	235.1196	C ₁₆ H ₂₇ O	235.2063	C ₁₃ H ₂₂ N ₃ O	236.1764
$C_{12}H_{13}NO_{4}$	235.0845	$C_{16}H_{11}O_{2}$	235.0759	$C_{13}H_6N_3O_2$	236.0460
$C_{12}H_{15}N_2O_3$	235.1083	C ₁₆ H ₂₉ N	235.2301	$C_{13}H_{24}N_{4}$	236.2003
$C_{12}H_{17}N_{3}O_{2}$	235.1322	C ₁₆ H ₁₃ NO	235.0998	C ₁₃ H ₈ N ₄ O	236.0699
$C_{12}HN_3O_3$	235.0018	$C_{16}H_{15}N_{2}$	235.1236	$C_{14}H_{20}O_{3}$	236.1413
$C_{12}H_{19}N_4O$	235.1560	C ₁₆ HN ₃	235.0171	$C_{14}H_4O_4$	236.0109
$C_{12}H_3N_4O_2$	235.0257	C ₁₇ H ₃₁	235.2427	$C_{14}H_{22}NO_2$	236.1651
C ₁₃ H ₁₅ O ₄	235.0970	C ₁₇ H ₁₅ O	235.1123	C ₁₄ H ₆ NO ₃	236.0348
C ₁₃ H ₁₇ NO ₃	235.1209	C ₁₇ H ₁₇ N	235.1362	$C_{14}H_{24}N_{2}O$	236.1890
C ₁₃ HNO ₄	234.9905	C ₁₇ HNO	235.0058	$C_{14}H_8N_2O_2$	236.0586
$C_{13}H_{19}N_2O_2$	235.1447	C ₁₇ H ₃ N ₂	235.0297	$C_{14}H_{26}N_{3}$	236.2129
C ₁₃ H ₃ N ₂ O ₃	235.0144	C ₁₈ H ₁₉	235.1488	$C_{14}H_{10}N_{3}O$	236.0825
C ₁₃ H ₂₁ N ₃ O	235.1686	C ₁₈ H ₃ O	235.0184	$C_{14}H_{12}N_{4}$	236.1063
C ₁₃ H ₅ N ₃ O ₂	235.0382	C ₁₈ H ₅ N	235.0422	$C_{15}H_{24}O_{2}$	236.1777
C ₁₃ H ₂₃ N ₄	235.1925	C ₁₉ H ₇	235.0548	$C_{15}H_8O_3$	236.0473
C ₁₃ H ₇ N ₄ O	235.0621	236		C ₁₅ H ₂₆ NO	236.2015
C ₁₄ H ₁₉ O ₃	235.1334	$C_{10}H_{24}N_{2}O_{4}$	236.1737	$C_{15}H_{10}NO_2$	236.0712
$C_{14}H_{3}O_{4}$	235.0031	C ₁₁ H ₁₂ N ₂ O ₄	236.0797	$C_{15}H_{28}N_2$	236.2254
$C_{14}H_{21}NO_{2}$	235.1573	C ₁₁ H ₁₄ N ₃ O ₃	236.1036	$C_{15}H_{12}N_{2}O$	236.0950
C ₁₄ H ₅ NO ₃	235.0269	$C_{11}H_{16}N_4O_2$	236.1275	$C_{15}H_{14}N_{3}$	236.1189
C ₁₄ H ₂₃ N ₂ O ₂	235.1811	$C_{12}H_{14}NO_4$	236.0923	C ₁₅ N ₄	236.0124
C ₁₄ H ₇ N ₂ O ₂	235.0508	C ₁₂ H ₁₆ N ₂ O ₃	236.1162	$C_{16}H_{28}O$	236.2141
C ₁₄ H ₂₅ N ₃	235.2050	$C_{12}N_{2}O_{4}$	235.9858	$C_{16}H_{12}O_{2}$	236.0837
$C_{14}H_9N_3'O$	235.0746	$C_{12}H_{18}N_{3}O_{2}$	236.1400	C ₁₆ H ₃₀ N	236.2380

	FM		FM		FM
C, H, NO	236.1076	C ₁ ,H ₂ ,N ₄	237.2081	C ₁ ,H ₁	237.1644
$C_{12}H_{14}N_{14}$	236.1315	C_1 , H_0 N ₄ O	237.0777	C ₁ ⁸ ²¹	237.0340
$C_{16}N_{2}O$	236.0011	C ₁₄ H ₂₁ O ₃	237.1491	C ₁ H ₂ N	237.0579
C, H, N,	236.0249	C ₁₄ H ₂ O ₄	237.0187	C, H	237.0705
C _{1,} H ₂ ,	236.2505	C ₁₄ H, NO,	237.1730	238	
$C_{17}H_{16}O$	236.1202	$C_{14}H_7NO_3$	237.0426	C ₁₁ H ₁₄ N ₂ O ₄	238.0954
C ₁₇ O,	235.9898	C ₁₄ H, N,O	237.1968	$C_{11}H_{16}N_{3}O_{3}$	238.1193
$C_{17}H_{18}N$	236.1440	$C_{14}H_9N_2O_2$	237.0664	$C_{11}H_{18}N_4O_2$	238.1431
C ₁₇ H ₂ NO	236.0136	$C_{14}H_{27}N_{3}$	237.2207	$C_{12}H_{16}NO_4$	238.1080
$C_{17}H_4N_2$	236.0375	$C_{14}H_{11}N_{3}O$	237.0903	$C_{12}H_{18}N_2O_3$	238.1318
C ₁₈ H ₂₀	236.1566	$C_{14}H_{13}N_4$	237.1142	$C_{12}H_2N_2O_4$	238.0014
C ₁₈ H ₄ O	236.0262	C ₁₅ H ₂₅ O ₂	237.1855	C ₁₂ H ₂₀ N ₃ O ₂	238.1557
C ₁₈ H ₆ N	236.0501	C ₁₅ H ₉ O ₃	237.0552	$C_{12}H_4N_3O_3$	238.0253
C ₁₉ H ₈	236.0626	C ₁₅ H ₂₇ NO	237.2094	$C_{12}H_{22}N_{4}O$	238.1795
237		C ₁₅ H ₁₁ NO ₂	237.0790	$C_{12}H_6N_4O_2$	238.0491
C ₁₁ H ₁₃ N ₂ O ₄	237.0876	$C_{15}H_{29}N_{2}$	237.2332	C ₁₃ H ₁₈ O ₄	238.1205
C ₁₁ H ₁₅ N ₃ O ₃	237.1114	C ₁₅ H ₁₃ N ₂ O	237.1029	$C_{13}H_{20}NO_{3}$	238.1444
C ₁₁ H ₁₇ N ₄ O ₂	237.1353	C ₁₅ H ₁₅ N ₃	237.1267	C ₁₃ H ₄ NO ₄	238.0140
C ₁₂ H ₁₅ NO ₄	237.1001	C ₁₅ HN ₄	237.0202	$C_{13}H_{22}N_2O_2$	238.1682
C ₁₂ H ₁₇ N ₂ O ₃	237.1240	C ₁₆ H ₂₉ O	237.2219	$C_{13}H_6N_2O_3$	238.0379
C ₁₂ HN ₂ O ₄	236.9936	C ₁₆ H ₁₃ O ₂	237.0916	$C_{13}H_{24}N_{3}O$	238.1921
C ₁₂ H ₁₉ N ₃ O ₂	237.1478	C ₁₆ H ₃₁ N	237.2458	$C_{13}H_8N_3O_2$	238.0617
C ₁₂ H ₃ N ₃ O ₃	237.0175	C ₁₆ H ₁₅ NO	237.1154	$C_{13}H_{26}N_{4}$	238.2160
$C_{12}H_{21}N_{4}O$	237.1717	$C_{16}H_{17}N_{2}$	237.1393	C ₁₃ H ₁₀ N ₄ O	238.0856
C ₁₂ H ₅ N ₄ O ₂	237.0413	C ₁₆ HN ₂ O	237.0089	$C_{14}H_{22}O_{3}$	238.1569
C ₁₃ H ₁₇ O ₄	237.1127	C ₁₆ H ₃ N ₃	237.0328	$C_{14}H_6O_4$	238.0266
C ₁₃ H ₁₉ NO ₃	237.1365	C ₁₇ H ₃₃	237.2584	$C_{14}H_{24}NO_2$	238.1808
C ₁₃ H ₃ NO ₄	237.0062	C ₁₇ H ₁₇ O	237.1280	C ₁₄ H ₈ NO ₃	238.0504
$C_{13}H_{21}N_{2}O_{2}$	237.1604	C ₁₇ HO ₂	236.9976	$C_{14}H_{26}N_{2}O$	238.2046
$C_{13}H_5N_2O_3$	237.0300	C ₁₇ H ₁₉ N	237.1519	$C_{14}H_{10}N_{2}O_{2}$	238.0743
C ₁₃ H ₂₃ N ₃ O	237.1842	C ₁₇ H ₃ NO	237.0215	$C_{14}H_{28}N_{3}$	238.2285
C ₁₃ H ₇ N ₃ O ₂	237.0539	$C_{17}H_{5}N_{2}$	237.0453	$C_{14}H_{12}N_{3}O$	238.0981

	FM		FM		FM
$C_{14}H_{14}N_4$	238.1220	C ₁₂ H ₁₇ NO ₄	239.1158	C ₁₅ HN ₃ O	239.0120
$C_{15}H_{26}O_{2}$	238.1934	C ₁ ,H ₁₉ N,O ₃	239.1396	C ₁₅ H ₃ N ₄	239.0359
C ₁₅ H ₁₀ O ₃	238.0630	C ₁ ,H ₃ N,O ₄	239.0093	C ₁₆ H ₁₁ O	239.2376
C ₁₅ H ₂₈ NO	238.2172	C ₁₂ H ₂₁ N ₃ O ₂	239.1635	$C_{16}H_{15}O_{2}$	239.1072
C ₁₅ H ₁ ,NO,	238.0868	C ₁ ,H,N,O,	239.0331	C ₁₆ H ₃₃ N	239.2615
C ₁₅ H ₃₀ N ₂	238.2411	C ₁₂ H ₂₃ N ₄ O	239.1873	C ₁₆ H ₁₇ NO	239.1311
$C_{15}H_{14}N_{2}O$	238.1107	$C_{12}H_{7}N_{4}O_{7}$	239.0570	C ₁₆ HNO,	239.0007
$C_{15}H_{16}N_{3}$	238.1346	C ₁₃ H ₁₉ O ₄	239.1284	C ₁₆ H ₁₉ N,	239.1549
C ₁₅ N ₃ O	238.0042	$C_{13}H_{21}NO_3$	239.1522	C ₁₆ H ₃ N ₂ O	239.0246
C ₁₅ H ₂ N ₄	238.0280	C ₁₃ H ₅ NO ₄	239.0218	$C_{16}H_5N_3$	239.0484
C ₁₆ H ₃₀ O	238.2298	$C_{13}H_{23}N_2O_2$	239.1761	C ₁₇ H ₃₅	239.2740
$C_{16}H_{14}O_{2}$	238.0994	$C_{13}H_7N_2O_3$	239.0457	C ₁₇ H ₁₉ O	239.1436
C ₁₆ H ₃₂ N	238.2536	C ₁₃ H ₂₅ N ₃ O	239.1999	C ₁₇ H ₃ O ₂	239.0133
C ₁₆ H ₁₆ NO	238.1233	$C_{13}H_{9}N_{3}O_{2}$	239.0695	$C_{17}H_{21}N$	239.1675
C ₁₆ NO ₂	237.9929	C ₁₃ H ₂₇ N ₄	239.2238	C ₁₇ H ₅ NO	239.0371
$C_{16}H_{18}N_{2}$	238.1471	C ₁₃ H ₁₁ N ₄ O	239.0934	C ₁₇ H ₇ N ₂	239.0610
$C_{16}H_2N_2O$	238.0167	C ₁₄ H ₂₃ O ₃	239.1648	C ₁₈ H ₂₃	239.1801
$C_{16}H_{4}N_{3}$	238.0406	$C_{14}H_7O_4$	239.0344	C ₁₈ H ₇ O	239.0497
C ₁₇ H ₃₄	238.2662	$C_{14}H_{25}NO_2$	239.1886	C ₁₈ H ₉ N	239.0736
C ₁₇ H ₁₈ O	238.1358	C ₁₄ H ₉ NO ₃	239.0583	C ₁₉ H ₁₁	239.0861
C ₁₇ H ₂ O ₂	238.0054	C ₁₄ H ₂₇ N ₂ O	239.2125	240	
C ₁₇ H ₂₀ N	238.1597	$C_{14}H_{11}N_{2}O_{2}$	239.0821	C ₁₁ H ₁₆ N ₂ O ₄	240.1111
C ₁₇ H ₄ NO	238.0293	$C_{14}H_{29}N_{3}$	239.2363	$C_{11}H_{18}N_{3}O_{3}$	240.1349
C ₁₇ H ₆ N ₂	238.0532	C ₁₄ H ₁₃ N ₃ O	239.1060	$C_{11}H_{20}N_4O_2$	240.1588
C ₁₈ H ₂₂	238.1722	$C_{14}H_{15}N_{4}$	239.1298	C ₁₂ H ₁₈ NO ₄	240.1236
C ₁₈ H ₆ O	238.0419	C ₁₅ H ₂₇ O ₂	239.2012	$C_{12}H_{20}N_{2}O_{3}$	240.1475
C ₁₈ H ₈ N	238.0657	C ₁₅ H ₁₁ O ₃	239.0708	$C_{12}H_4N_2O_4$	240.0171
C ₁₉ H ₁₀	238.0783	C ₁₅ H ₂₉ NO	239.2250	$C_{12}H_{22}N_{3}O_{2}$	240.1713
239		$C_{15}H_{13}NO_2$	239.0947	$C_{12}H_{6}N_{3}O_{3}$	240.0410
C ₁₁ H ₁₅ N ₂ O ₄	239.1032	C ₁₅ H ₃₁ N ₂	239.2489	$C_{12}H_{24}N_{4}O$	240.1952
C ₁₁ H ₁₇ N ₃ O ₃	239.1271	$C_{15}H_{15}N_{2}O$	239.1185	$C_{12}H_8N_4O_2$	240.0648
$C_{11}H_{19}N_4O_2$	239.1509	$C_{15}H_{17}N_{3}$	239.1424	C ₁₃ H ₂₀ O ₄	240.1362

ł

	FM	· · · · · · · · · · · · · · · · · · ·	FM		FM
C ₁₃ H ₂₂ NO ₃	240.1600	C ₁₆ H ₁₈ NO	240.1389	C ₁₃ H ₂₇ N ₃ O	241.2156
C ₁₃ H ₆ NO ₄	240.0297	C ₁₆ H,NO,	240.0085	$C_{i3}H_{11}N_{3}O_{2}$	241.0852
C ₁₃ H ₂₄ N ₂ O,	240.1839	$C_{16}H_{20}N$,	240.1628	$C_{13}H_{29}N_4$	241.2394
C ₁₃ H ₈ N ₂ O ₃	240.0535	$C_{16}H_4N_2O$	240.0324	$C_{13}H_{13}N_4O$	241.1091
C ₁₃ H ₂₆ N ₃ O	240.2077	$C_{16}H_6N_3$	240.0563	$C_{14}H_{25}O_{3}$	241.1804
C ₁₃ H ₁₀ N ₃ O ₂	240.0774	C ₁₇ H ₃₆	240.2819	C ₁₄ H ₉ O ₄	241.0501
$C_{13}H_{28}N_4$	240.2316	C ₁₇ H ₂₀ O	240.1515	$C_{14}H_{27}NO_2$	241.2043
$C_{13}H_{12}N_4O$	240.1012	$C_{17}H_4O_2$	240.0211	$C_{14}H_{11}NO_3$	241.0739
$C_{14}H_{24}O_{3}$	240.1726	$C_{17}H_{22}N$	240.1753	$C_{14}H_{29}N_{2}O$	241.2281
$C_{14}H_8O_4$	240.0422	C ₁₇ H ₆ NO	240.0449	$C_{14}H_{13}N_2O_2$	241.0978
$C_{14}H_{26}NO_2$	240.1965	$C_{17}H_8N_2$	240.0688	$C_{14}H_{31}N_{3}$	241.2520
$C_{14}H_{10}NO_{3}$	240.0661	$C_{18}H_{24}$	240.1879	C ₁₄ H ₁₅ N ₃ O	241.1216
$C_{14}H_{28}N_{2}O$	240.2203	C ₁₈ H ₈ O	240.0575	C ₁₄ H ₁₇ N ₄	241.1455
$C_{14}H_{12}N_{2}O_{2}$	240.0899	C ₁₈ H ₁₀ N	240.0814	C ₁₄ HN ₄ O	241.0151
$C_{14}H_{30}N_{3}$	240.2442	$C_{19}H_{12}$	240.0939	C ₁₅ H ₂₉ O ₂	241.2168
C ₁₄ H ₁₄ N ₃ O	240.1138	C ₂₀	240.0000	C ₁₅ H ₁₃ O ₃	241.0865
$C_{14}H_{16}N_{4}$	240.1377	241		C ₁₅ H ₃₁ NO	241.2407
C ₁₄ N ₄ O	240.0073	$C_{11}H_{17}N_{2}O_{4}$	241.1189	C ₁₅ H ₁₅ NO ₂	241.1103
C ₁₅ H ₂₈ O ₂	240.2090	$C_{11}H_{19}N_{3}O_{3}$	241.1427	C ₁₅ H ₃₃ N ₂	241.2646
$C_{15}H_{12}O_{3}$	240.0786	$C_{11}H_{21}N_4O_2$	241.1666	C ₁₅ H ₁₇ N ₂ O	241.1342
C ₁₅ H ₃₀ NO	240.2329	$C_{12}H_{19}NO_4$	241.1315	C ₁₅ HN ₂ O ₂	241.0038
C ₁₅ H ₁₄ NO ₂	240.1015	$C_{12}H_{21}N_{2}O_{3}$	241.1553	$C_{15}H_{19}N_{3}$	241.1580
C ₁₅ H ₃₂ N ₂	240.2567	C ₁₂ H ₅ N ₂ O ₄	241.0249	$C_{15}H_3N_3O$	241.0277
$C_{15}H_{16}N_{2}O$	240.1264	C ₁₂ H ₂₃ N ₃ O ₂	241.1791	C ₁₅ H ₅ N ₄	241.0515
$C_{15}N_2O_2$	239.9960	$C_{12}H_7N_3O_3$	241.0488	C ₁₆ H ₃₃ O	241.2533
$C_{15}H_{18}N_{3}$	240.1502	$C_{12}H_{25}N_{4}O$	241.2030	C ₁₆ H ₁₇ O ₂	241.1229
C ₁₅ H ₂ N ₃ O	240.0198	$C_{12}H_{9}N_{4}O_{2}$	241.0726	C ₁₆ HO ₃	240.9925
C ₁₅ H ₄ N ₄	240.0437	C ₁₃ H ₂₁ O ₄	241.1440	C ₁₆ H ₃₅ N	241.2771
C ₁₆ H ₃₂ O	240.2454	C ₁₃ H ₂₃ NO ₃	241.1679	C ₁₆ H ₁₉ NO	241.1467
C ₁₆ H ₁₆ O ₂	240.1151	C ₁₃ H ₇ NO ₄	241.0375	C ₁₆ H ₃ NO ₂	241.0164
C ₁₆ O ₃	239.9847	$C_{13}H_{25}N_2O_2$	241.1917	$C_{16}H_{21}N_{2}$	241.1706
C ₁₆ H ₃₄ N	240.2693	$C_{13}H_{9}N_{2}O_{3}$	241.0614	$C_{16}H_5N_2O$	241.0402

 $C_{16}H_7N_3$

FM

241.0641

 $C_{14}H_{10}O_{4}$

		219
FM		FM
242.0579	C ₁₇ H ₈ NO	242.0606
242.2121	$C_{17}H_{10}N_{2}$	242.0845
242.0817	$C_{18}H_{26}$	242.2036
242.2360	C ₁₈ H ₁₀ O	242.0732
	0 11 11	

C ₁₇ H ₂₁ O	241.1593	$C_{14}H_{28}NO_2$	242.2121	$C_{17}H_{10}N_{2}$	242.0845
C ₁₇ H ₅ O ₂	241.0289	$C_{14}H_{12}NO_3$	242.0817	C ₁₈ H ₂₆	242.2036
C ₁₇ H ₂₃ N	241.1832	$C_{14}H_{30}N_{2}O$	242.2360	C ₁₈ H ₁₀ O	242.0732
C ₁₇ H ₇ NO	241.0528	$C_{14}H_{14}N_2O_2$	242.1056	$C_{18}H_{12}N$	242.0970
$C_{17}H_{9}N_{2}$	241.0767	$C_{14}H_{32}N_{3}$	242.2598	C ₁₉ H ₁₄	242.1096
C ₁₈ H ₂₅	241.1957	C ₁₄ H ₁₆ N ₃ O	242.1295	C ₁₉ N	242.0031
C ₁₈ H ₉ O	241.0653	$C_{14}N_{3}O_{2}$	241.9991	$C_{20}H_{2}$	242.0157
C ₁₈ H ₁₁ N	241.0892	$C_{14}H_{18}N_{4}$	242.1533	243	
C ₁₉ H ₁₃	241.1018	$C_{14}H_2N_4O$	242.0229	$C_{11}H_{19}N_2O_4$	243.1345
C ₂₀ H	241.0078	$C_{15}H_{30}O_2$	242.2247	$C_{11}H_{21}N_{3}O_{3}$	243.1584
242		C ₁₅ H ₁₄ O ₃	242.0943	$C_{11}H_{23}N_4O_2$	243.1822
$C_{11}H_{18}N_2O_4$	242.1267	C ₁₅ H ₃₂ NO	242.2485	$C_{12}H_{21}NO_4$	243.1471
C ₁₁ H ₂₀ N ₃ O ₃	242.1506	$C_{15}H_{16}NO_2$	242.1182	C ₁₂ H ₂₃ N ₂ O ₃	243.1710
$C_{11}H_{22}N_4O_2$	242.1744	C ₁₅ NO ₃	241.9878	$C_{12}H_7N_2O_4$	243.0406
$C_{12}H_{20}NO_{4}$	242.1393	$C_{15}H_{34}N_{2}$	242.2724	$C_{12}H_{25}N_{3}O_{2}$	243.1948
$C_{12}H_{22}N_2O_3$	242.1631	$C_{15}H_{18}N_{2}O$	242.1420	$C_{12}H_{9}N_{3}O_{3}$	243.0644
$C_{12}H_6N_2O_4$	242.0328	$C_{15}H_2N_2O_2$	242.0116	$C_{12}H_{27}N_4O$	243.2187
$C_{12}H_{24}N_{3}O_{2}$	242.1870	$C_{15}H_{20}N_{3}$	242.1659	$C_{12}H_{11}N_4O_2$	243.0883
$C_{12}H_8N_3O_3$	242.0566	C ₁₅ H ₄ N ₃ O	242.0355	$C_{13}H_{23}O_{4}$	243.1597
$C_{12}H_{26}N_{4}O$	242.2108	$C_{15}H_6N_4$	242.0594	$C_{13}H_{25}NO_{3}$	243.1835
$C_{12}H_{10}N_4O_2$	242.0805	C ₁₆ H ₃₄ O	242.2611	C ₁₃ H ₉ NO ₄	243.0532
C ₁₃ H ₂₂ O ₄	242.1518	$C_{16}H_{18}O_{2}$	242.1307	$C_{13}H_{27}N_2O_2$	243.2074
C ₁₃ H ₂₄ NO ₃	242.1757	$C_{16}H_2O_3$	242.0003	$C_{13}H_{11}N_2O_3$	243.0770
C ₁₃ H ₈ NO ₄	242.0453	$C_{16}H_{20}NO$	242.1546	C ₁₃ H ₂₉ N ₃ O	243.2312
$C_{13}H_{26}N_2O_2$	242.1996	$C_{16}H_4NO_2$	242.0242	$C_{13}H_{13}N_{3}O_{2}$	243.1009
$C_{13}H_{10}N_2O_3$	242.0692	$C_{16}H_{22}N_{2}$	242.1784	C ₁₃ H ₃₁ N ₄	243.2551
$C_{13}H_{28}N_{3}O$	242.2234	$C_{16}H_6N_2O$	242.0480	$C_{13}H_{15}N_{4}O$	243.1247
C ₁₃ H ₁₂ N ₃ O ₂	242.0930	$C_{16}H_8N_3$	242.0719	C ₁₄ H ₂₇ O ₃	243.1961
C ₁₃ H ₃₀ N ₄	242.2473	C ₁₇ H ₂₂ O	242.1671	C ₁₄ H ₁₁ O ₄	243.0657
$C_{13}H_{14}N_{4}O$	242.1169	$C_{17}H_6O_2$	242.0368	$C_{14}H_{29}NO_{2}$	243.2199
$C_{14}H_{26}O_{3}$	242.1883	$C_{17}H_{24}N$	242.1910	$C_{14}H_{13}NO_{3}$	243.0896

<u></u>	FM		FM		FM
	242 2429	<u>с и</u>	242 1174		244.0147
$C_{14} \Pi_{31} N_2 O$	243.2430	C IN	245.1174	$C_{14} \overline{D}_2 \overline{N}_3 \overline{O}_2$	244.0147
$C_{14} \Pi_{15} N_2 O_2$	245.1154		243.0109	$C_{14} \overline{C}_{20} N_4$	244.1090
$C_{14}H_{33}N_{3}$	243.2077	С ₂₀ Н ₃	243.0235	$C_{14}H_4N_4O$	244.0380
$C_{14}H_{17}N_{3}O$	243.1373	244		$C_{15}H_{32}O_{2}$	244.2403
$C_{14}HN_3O_2$	243.0069	$C_{11}H_{20}N_2O_4$	244.1424	$C_{15}H_{16}O_{3}$	244.1100
$C_{14}H_{19}N_{4}$	243.1611	$C_{11}H_{22}N_{3}O_{3}$	244.1662	C ₁₅ O ₄	243.9796
C ₁₄ H ₃ N ₄ O	243.0308	$C_{11}H_{24}N_4O_2$	244.1901	$C_{15}H_{18}NO_2$	244.1338
C ₁₅ H ₃₁ O ₂	243.2325	$C_{12}H_{22}NO_4$	244.1549	C ₁₅ H ₂ NO ₃	244.0034
C ₁₅ H ₁₅ O ₃	243.1021	$C_{12}H_{24}N_2O_3$	244.1788	$C_{15}H_{20}N_{2}O$	244.1577
C ₁₅ H ₃₃ NO	243.2564	$C_{12}H_8N_2O_4$	244.0484	$C_{15}H_4N_2O_2$	244.0273
C ₁₅ H ₁₇ NO ₂	243.1260	$C_{12}H_{26}N_{3}O_{2}$	244.2026	$C_{15}H_{22}N_{3}$	244.1815
C ₁₅ HNO ₃	242.9956	$C_{12}H_{10}N_{3}O_{3}$	244.0723	$C_{15}H_6N_3O$	244.0511
C ₁₅ H ₁₉ N ₂ O	243.1498	$C_{12}H_{28}N_{4}O$	244.2265	$C_{15}H_{8}N_{4}$	244.0750
C ₁₅ H ₃ N ₂ O ₂	243.0195	$C_{12}H_{12}N_4O_2$	244.0961	C ₁₆ H ₂₀ O ₂	244.1464
$C_{15}H_{21}N_{3}$	243.1737	C ₁₃ H ₂₄ O ₄	244.1675	C ₁₆ H ₄ O ₃	244.0160
C ₁₅ H ₅ N ₃ O	243.0433	C ₁₃ H ₂₆ NO ₃	244.1914	C ₁₆ H ₂₂ NO	244.1702
$C_{15}H_7N_4$	243.0672	C ₁₃ H ₁₀ NO ₄	244.0610	C ₁₆ H ₆ NO ₂	244.0399
$C_{16}H_{19}O_{2}$	243.1385	$C_{13}H_{28}N_2O_2$	244.2152	$C_{16}H_{24}N_{2}$	244.1941
C ₁₆ H ₃ O ₃	243.0082	$C_{13}H_{12}N_{2}O_{3}$	244.0848	$C_{16}H_8N_2O$	244.0637
C ₁₆ H ₂₁ NO	243.1624	C ₁₃ H ₃₀ N ₃ O	244.2391	C ₁₆ H ₁₀ N ₃	244.0876
C ₁₆ H ₅ NO ₂	243.0320	$C_{13}H_{14}N_{3}O_{2}$	244.1087	C ₁₇ H ₂₄ O	244.1828
$C_{16}H_{23}N_{2}$	243.1863	$C_{13}H_{32}N_{4}$	244.2629	C ₁₇ H ₈ O ₂	244.0524
$C_{16}H_7N_2O$	243.0559	$C_{13}H_{16}N_{4}O$	244.1325	C ₁₇ H ₂₆ N	244.2067
$C_{16}H_9N_3$	243.0798	$C_{13}N_4O_2$	244.0022	C ₁₇ H ₁₀ NO	244.0763
C ₁₇ H ₂₃ O	243.1750	$C_{14}H_{28}O_{3}$	244.2039	$C_{17}H_{12}N_{2}$	244.1001
C ₁₇ H ₇ O,	243.0446	$C_{14}H_{12}O_{4}$	244.0735	C ₁₈ H ₂₈	244.2192
C ₁₇ H ₂₅ N	243.1988	$C_{14}H_{30}NO_{2}$	244.2278	$C_{18}H_{12}O$	244.0888
C ₁₇ H ₉ NO	243.0684	$C_{14}H_{14}NO_3$	244.0974	C ₁₈ H ₁₄ N	244.1127
$C_{17}H_{11}N_{2}$	243.0923	C ₁₄ H ₃ ,N,O	244.2516	$C_{18}N_{2}$	244.0062
C ₁₈ H ₂₇	243.2114	C ₁₄ H ₁₆ N,O,	244.1213	C ₁₉ H ₁₆	244.1253
C ₁₈ H ₁₁ O	243.0810	C ₁₄ N ₂ O,	243.9909	C ₁₉ O	243.9949
C ₁₈ H ₁₃ N	243.1049	C ₁₄ H ₁₈ N ₃ O	244.1451	C ₁₉ H ₂ N	244.0187

	FM		FM		FM
C ₂₀ H ₄	244.0313	C ₁₅ HO ₄	244.9874	C ₁₂ H ₂₄ NO ₄	246.1706
245		C ₁₅ H ₁₉ NO,	245.1416	C ₁ ,H ₂₆ N,O ₃	246.1945
C ₁₁ H ₂₁ N ₂ O ₄	245.1502	C ₁₅ H ₃ NO ₃	245.0113	C ₁ ,H ₁₀ N,O ₄	246.0641
C ₁₁ H ₂₃ N ₃ O ₃	245.1741	C ₁₅ H ₂₁ N,O	245.1655	$C_{12}H_{28}N_{3}O_{2}$	246.218,3
$C_{11}H_{25}N_4O_2$	245.1979	C ₁₅ H ₅ N ₂ O ₂	245.0351	$C_{12}H_{12}N_{3}O_{3}$	246.0879
$C_{12}H_{23}NO_{4}$	245.1628	$C_{15}H_{23}N_{3}$	245.1894	$C_{12}H_{30}N_4O$	246.2422
C ₁₂ H ₂₅ N ₂ O ₃	245.1866	$C_{15}H_7N_3O$	245.0590	$C_{12}H_{14}N_4O_2$	246.1118
$C_{12}H_{9}N_{2}O_{4}$	245.0653	C ₁₅ H ₉ N ₄	245.0829	$C_{13}H_{26}O_{4}$	246.1832
C ₁₂ H ₂₇ N ₃ O ₂	245.2105	$C_{16}H_{21}O_{2}$	245.1542	$C_{13}H_{28}NO_3$	246.2070
$C_{12}H_{11}N_{3}O_{3}$	245.0801	C ₁₆ H ₅ O ₃	245.0238	C ₁₃ H ₁₂ NO ₄	246.0766
$C_{12}H_{29}N_4O$	245.2343	C ₁₆ H ₂₃ NO	245.1781	$C_{13}H_{30}N_{2}O_{2}$	246.2309
$C_{12}H_{13}N_4O_2$	245.1040	C ₁₆ H ₇ NO ₂	245.0477	$C_{13}H_{14}N_2O_3$	246.1005
C ₁₃ H ₂₅ O ₄	245.1753	$C_{16}H_{25}N_{2}$	245.2019	$C_{13}H_{16}N_{3}O_{2}$	246.1244
C ₁₃ H ₂₇ NO ₃	245.1992	$C_{16}H_9N_2O$	245.0715	C ₁₃ N ₃ O ₃	245.9940
C ₁₃ H ₁₁ NO ₄	245.0688	$C_{16}H_{11}N_{3}$	245.0954	$C_{13}H_{18}N_{4}O$	246.1482
$C_{13}H_{29}N_2O_2$	245.2230	C ₁₇ H ₂₅ O	245.1906	$C_{13}H_2N_4O_2$	246.0178
C ₁₃ H ₁₃ N ₂ O ₃	245.0927	C ₁₇ H ₉ O ₂	245.0603	C ₁₄ H ₃₀ O ₃	246.2196
C ₁₃ H ₃₁ N ₃ O	245.2469	C ₁₇ H ₂₇ N	245.2145	C ₁₄ H ₁₄ O ₄	246.0892
C ₁₃ H ₁₅ N ₃ O ₂	245.1165	C ₁₇ H ₁₁ NO	245.0841	$C_{14}H_{16}NO_3$	246.1131
C ₁₃ H ₁₇ N ₄ O	245.1404	$C_{17}H_{13}N_{2}$	245.1080	C ₁₄ NO ₄	245.9827
$C_{13}HN_4O_2$	245.0100	C ₁₈ H ₂₉	245.2270	$C_{14}H_{18}N_{2}O_{2}$	246.1369
C ₁₄ H ₂₉ O ₃	245.2117	$C_{18}^{-}N_{13}^{-}O$	245.0967	$C_{14}H_2N_2O_3$	246.0065
C ₁₄ H ₁₃ O ₄	245.0814	C ₁₈ H ₁₅ N	245.1205	C ₁₄ H ₂₀ N ₃ O	246.1608
$C_{14}H_{31}NO_2$	245.2356	C ₁₈ HN ₂	245.0140	$C_{14}H_4N_3O_2$	246.0304
C ₁₄ H ₁₅ NO ₃	245.1052	C ₁₉ H ₁₇	245.1331	$C_{14}H_{22}N_{4}$	246.1846
C ₁₄ H ₁₇ N ₂ O ₂	245.1291	C ₁₉ HO	245.0027	C ₁₄ H ₆ N ₄ O	246.0542
C ₁₄ HN ₂ O ₃	244.9987	C ₁₉ H ₃ N	245.0266	$C_{15}H_{18}O_{3}$	246.1256
C ₁₄ H ₁₉ N ₃ O	245.1529	$C_{20}H_{5}$	245.0391	$C_{15}H_2O_4$	245.9953
$C_{14}H_3N_3O_2$	245.0226	246		$C_{15}H_{20}NO_{2}$	246.1495
$C_{14}H_{21}N_4$	245.1768	$C_{11}H_{22}N_{2}O_{4}$	246.1580	$C_{15}H_4NO_3$	246.0191
C ₁₄ H ₅ N ₄ O	245.0464	$C_{11}H_{24}N_{3}O_{3}$	246.1819	C ₁₅ H ₂₂ N ₂ O	246.1733
C ₁₅ H ₁₇ O ₃	245.1178	$C_{11}H_{26}N_4O_2$	246.2057	$C_{15}H_6N_2O_2$	246.0429

	FM	<u> </u>	FM		FM
C., H., N.	246.1972	C.,H.,N.O.	247.2261	C ₁₆ H ₀ NO ₂	247.0634
C ₁₅ H ₀ N ₂ O	246.0668	C ₁ ,H ₁ ,N,O,	247.0958	C ₁₆ H, N,	247.2176
$C_{15}H_{10}N_{4}$	246.0907	$C_{12}H_{15}N_{4}O_{5}$	247.1196	$C_{16}H_{11}N_{,0}$	247.0872
C ₁₆ H,,O,	246.1620	C ₁₃ H ₂₇ O ₄	247.1910	$C_{16}H_{13}N_{3}$	247.1111
$C_{16}H_{6}O_{3}$	246.0317	C ₁₃ H ₂₀ NO,	247.2148	C ₁₇ H,70	247.2063
C ₁₆ H ₂₄ NO	246.1859	C ₁₃ H ₁₃ NO ₄	247.0845	$C_{17}H_{11}O_{2}$	247.0759
$C_{16}H_{8}NO_{7}$	246.0555	C ₁₃ H ₁₅ N,O ₃	247.1083	$C_{17}H_{29}N$	247.2301
C ₁₆ H ₂₆ N ₂	246.2098	C ₁₃ H ₁₇ N ₃ O,	247.1322	C ₁₇ H ₁₃ NO	247.0998
C ₁₆ H ₁₀ N ₂ O	246.0794	C ₁₃ HN ₃ O ₃	247.0018	C ₁₇ H ₁₅ N ₂	247.1236
$C_{16}H_{12}N_{3}$	246.1032	C ₁₃ H ₁₉ N ₄ O	247.1560	C ₁₇ HN ₃	247.0171
C ₁₇ H ₂₆ O	246.1985	C ₁₃ H ₃ N ₄ O,	247.0257	C ₁₈ H ₃₁	247.2427
$C_{17}H_{10}O_{7}$	246.0681	C ₁₄ H ₁₅ O ₄	247.0970	C ₁₈ H ₁₅ O	247.1123
C ₁₇ H ₂₈ N	246.2223	$C_{14}H_{17}NO_3$	247.1209	C ₁₈ H ₁₇ N	247.1362
C ₁₇ H ₁ ,NO	246.0919	C ₁₄ HNO ₄	246.9905	C ₁₈ HNO	247.0058
$C_{17}H_{14}N_{7}$	246.1158	C ₁₄ H ₁₉ N,O,	247.1447	$C_{18}H_3N_2$	247.0297
$C_{17}N_3$	246.0093	C ₁₄ H ₃ N ₂ O ₃	247.0144	C ₁₉ H ₁₉	247.1488
C ₁₈ H ₃₀	246.2349	C ₁₄ H ₂₁ N ₃ O	247.1686	C ₁₉ H ₃ O	247.0184
$C_{18}H_{14}O$	246.1045	$C_{14}H_5N_3O_2$	247.0382	C ₁₉ H ₅ N	247.0422
$C_{18}H_{16}N$	246.1284	$C_{14}H_{23}N_{4}$	247.1925	C ₂₀ H ₇	247.0548
C ₁₈ NO	245.9980	C ₁₄ H ₇ N ₄ O	247.0621	248	
$C_{18}H_{2}N_{2}$	246.0218	C ₁₅ H ₁₉ O ₃	247.1334	$C_{11}H_{24}N_2O_4$	248.1737
C ₁₉ H ₁₈	246.1409	C ₁₅ H ₃ O ₄	247.0031	C ₁₁ H ₂₆ N ₃ O ₃	248.1976
C ₁₉ H ₂ O	246.0106	$C_{15}H_{21}NO_2$	247.1573	$C_{11}H_{28}N_4O_2$	248.2214
C ₁₉ H₄N	246.0344	C ₁₅ H ₅ NO ₃	247.0269	$C_{12}H_{26}NO_4$	248.1863
$C_{20}H_{6}$	246.0470	C ₁₅ H ₂₃ N ₂ O	247.1811	C ₁₂ H ₂₈ N ₂ O ₃	248.2101
247		$C_{15}H_{7}N_{2}O_{2}$	247.0508	$C_{12}H_{12}N_{2}O_{4}$	248.0797
$C_{11}H_{23}N_2O_4$	247.1659	$C_{15}H_{25}N_{3}$	247.2050	$C_{12}H_{14}N_{3}O_{3}$	248.1036
$C_{11}H_{25}N_{3}O_{3}$	247.1897	C ₁₅ H ₉ N ₃ O	247.0746	$C_{12}H_{16}N_4O_2$	248.1275
$C_{11}H_{27}N_4O_2$	247.2136	$C_{15}H_{11}N_4$	247.0985	$C_{13}H_{28}O_{4}$	248.1988
C ₁₂ H ₂₅ NO ₄	247.1784	C ₁₆ H ₂₃ O ₂	247.1699	$C_{13}H_{14}NO_{4}$	248.0923
C ₁₂ H ₂₇ N ₂ O ₃	247.2023	C ₁₆ H ₇ O ₃	247.0395	$C_{13}H_{16}N_2O_3$	248.1162
C ₁₂ H ₁₁ N ₂ O ₄	247.0719	C ₁₆ H ₂₅ NO	247.1937	$C_{13}N_{2}O_{4}$	247.9858

	FM		FM		FM
C ₁₂ H ₁₀ N ₂ O ₂	248.1400	C ₁₇ H ₃₀ N	248.2380	C ₁₄ H ₂₁ N ₂ O ₂	249.1604
C ₁ ,H,N,O,	248.0096	$C_{17}H_{14}NO$	248.1076	$C_{14}H_{5}N_{2}O_{3}$	249.0300
C ₁₂ H ₂₀ N ₄ O	248.1639	$C_{17}H_{16}N_{2}$	248.1315	C ₁₄ H ₂ N ₃ O	249.1842
$C_1, H_1 N_1 O_2$	248.0335	C ₁₇ N ₂ O	248.0011	$C_{14}H_7N_3O_7$	249.0539
C ₁ H ₁₆ O ₄	248.1049	$C_{17}H_{2}N_{3}$	248.0249	$C_{14}H_{25}N_{4}$	249.2081
$C_{14}H_{18}NO_{3}$	248.1287	$C_{18}H_{32}$	248.2505	C ₁₄ H ₉ N ₄ O	249.0777
C, H, NO	247.9983	C18H16O	248.1202	C ₁₅ H ₂₁ O ₃	249.1491
$C_{14}H_{20}N_{2}O_{2}$	248.1526	$C_{18}O_{2}$	247.9898	C ₁₅ H ₅ O ₄	249.0187
$C_{14}H_4N_2O_3$	248.0222	$C_{18}H_{18}N$	248.1440	$C_{15}H_{23}NO_2$	249.1730
C ₁₄ H ₂ N ₃ O	248.1764	C ₁₈ H ₂ NO	248.0136	$C_{15}H_7NO_3$	249.0426
$C_{14}H_6N_3O_2$	248.0460	$C_{18}H_4N_2$	248.0375	C ₁₅ H ₂₅ N ₂ O	249.1968
$C_{14}H_{24}N_{4}$	248.2003	$C_{19}H_{20}$	248.1566	$C_{15}H_9N_2O_2$	249.0664
C ₁₄ H ₈ N ₄ O	248.0699	C ₁₉ H ₄ O	248.0262	C ₁₅ H ₂₇ N ₃	249.2200
$C_{15}H_{20}O_{3}$	248.1413	C ₁₉ H ₆ N	248.0501	C ₁₅ H ₁₁ N ₃ O	249.0903
C ₁₅ H ₄ O ₄	248.0109	$C_{20}H_{8}$	248.0626	C ₁₅ H ₁₃ N ₄	249.1142
C ₁₅ H ₂₂ NO ₂	248.1651	249 ·		C ₁₆ H ₂₅ O ₂	249.1855
C ₁₅ H ₆ NO ₃	248.0348	$C_{11}H_{25}N_{2}O_{4}$	249.1815	C ₁₆ H ₉ O ₃	249.0552
C ₁₅ H ₂₄ N ₂ O	248.1890	C ₁₁ H ₂₇ N ₃ O ₃	249.2054	C ₁₆ H ₂₇ NO	249.2094
C ₁₅ H ₈ N ₂ O ₂	248.0586	$C_{12}H_{27}NO_{4}$	249.1941	$C_{16}H_{11}NO_2$	249.0790
$C_{15}H_{26}N_{3}$	248.2129	C ₁₂ H ₁₃ N ₂ O ₄	249.0876	$C_{16}H_{29}N_{2}$	249.2332
C ₁₅ H ₁₀ N ₃ O	248.0825	$C_{12}H_{15}N_{3}O_{3}$	249.1114	C ₁₆ H ₁₃ N ₂ O	249.1029
C ₁₅ H ₁₂ N ₄	248.1063	$C_{12}H_{17}N_4O_2$	249.1353	$C_{16}H_{15}N_{3}$	249.1267
$C_{16}H_{24}O_{2}$	248.1777	$C_{13}H_{15}NO_4$	249.1001	C ₁₆ HN ₄	249.0202
C ₁₆ H ₈ O ₃	248.0473	C ₁₃ H ₁₇ N ₂ O ₃	249.1240	C ₁₇ H ₂₉ O	249.2219
C ₁₆ H ₂₆ NO	248.2015	C ₁₃ HN ₂ O ₄	248.9936	C ₁₇ H ₁₃ O ₂	249.0916
C ₁₆ H ₁₀ NO ₂	248.0712	C ₁₃ H ₁₉ N ₃ O ₂	249.1478	C ₁₇ H ₃₁ N	249.2458
$C_{16}H_{28}N_2$	248.2254	C ₁₃ H ₃ N ₃ O ₃	249.0175	C ₁₇ H ₁₅ NO	249.1154
C ₁₆ H ₁₂ N ₂ O	248.0950	$C_{13}H_{21}N_4O$	249.1717	$C_{17}H_{17}N_{2}$	249.1393
C ₁₆ H ₁₄ N ₃	248.1189	$C_{13}H_5N_4O_2$	249.0413	C ₁₇ HN ₂ O	249.0089
C ₁₆ N ₄	248.0124	C ₁₄ H ₁₇ O ₄	249.1127	C ₁₇ H ₃ N ₃	249.0328
C ₁₇ H ₂₈ O	248.2141	$C_{14}H_{19}NO_{3}$	249.1365	C ₁₈ H ₃₃	249.2584
C ₁₇ H ₁₂ O ₂	248.0837	$C_{14}H_3NO_4$	249.0062	C ₁₈ H ₁₇ O	249.1290

,

	FM	·····	FM	F	M
C ₁₈ HO,	248.9976	$C_{15}H_8NO_3$	250.0504		
$C_{18}H_{19}N$	249.1519	C ₁₅ H ₂₆ N ₂ O	250.2046		
C ₁₈ H ₃ NO	249.0215	$C_{15}H_{10}N_2O_2$	250.0743		
$C_{18}H_5N_2$	249.0453	C ₁₅ H ₂₈ N ₃	250.2285		
C ₁₉ H ₂₁	249.1644	C ₁₅ H ₁₂ N ₃ O	250.0981		
C ₁₉ H ₅ O	249.0340	$C_{15}H_{14}N_4$	250.1220		
C ₁₉ H ₇ N	249.0579	$C_{16}H_{26}O_{2}$	256.1934		
C ₂₀ H ₉	249.0705	C ₁₆ H ₁₀ O ₃	250.0630		
250		C ₁₆ H ₂₈ NO	250.2172		
C ₁₁ H ₂₆ N ₂ O ₄	250.1894	$C_{16}H_{12}NO_2$	250.0868		
C_1,H_1,N_2O_4	250.0954	$C_{16}H_{30}N_{2}$	250.2411		
$C_{12}H_{14}N_{2}O_{1}$	250.1193	$C_{16}H_{14}N_{2}O$	250.1107		
$C_{12}H_{10}N_{1}O_{2}$	250.1431	C ₁₆ H ₁₆ N ₃	250.1346		
$C_{1,H_{1,NO_{1}}}$	250.1080	C ₁₆ N ₃ O	250.0042		
C,,H,,N,O,	250.1318	C ₁₆ H ₂ N ₄	250.0280		
C.,H.N.O.	250.0014	C ₁₇ H ₃₀ O	250.2298		
CHN.O.	250.1557	$C_{17}H_{14}O_2$	250.0994		
C, H, N, O,	250.0253	$C_{17}H_{32}N$	250.2536		
C, H, N,O	250.1795	$C_{17}H_{16}NO$	250.1233		
$C_{1,1}H_{1}N_{1}O_{2}$	250.0491	$C_{17}NO_2$	249.9929		
C.,H.,O.	250.1205	$C_{17} H_{18} H_2$	250.1471		
$C_1H_2NO_2$	250.1444	C H N	250.0107		
C. H.NO.	250.0140	$C_{17} H_{4} R_{3}$	250.0400		
$C_{14}^{14} + 4_{14}^{4} + C_{14}^{4} + C_$	250.1682	С Н О	250.2002		
C., H.N.O.	250.0379	С Н О	250.0054		
C, H, N,O	250.1921	$C_{18} + 2 C_{2}$	250.1597		
$C_{14} = \frac{14}{24} = \frac{3}{3}$	250.0617	C_{18}^{-1}	250.0293		
C.H.N.	250.2160	C_{18} H_{N}	250.0532		
C. H. N.O	250.0856	C.,H.,	250.1722		
C ₁₄ H ₂ O ₂	250.1569	$C_{10}H_{2}O$	250.0419		
$C_{12}H_{22}$	250.0266	C ₁₀ H ₈ N	250.0657		
$C_{15}H_{24}NO_{2}$	250.1808	C ₂₀ H ₁₀	250.0783		

-

(a) If only C, H, N, O, F, P, I are present, the approximate expected % (M + 1) and % (M + 2) intensities can be calculated by use of the following formulas:

$$\% (M + 1) = 100 \left[\frac{(M+1)}{(M)} \right]$$

 $\simeq 1.1 \times$ number of C atoms + 0.36 × number of N atoms.

% (M+2) = 100
$$\left[\frac{(M+2)}{(M)}\right]$$

 $\simeq \frac{(1.1 \times \text{number of C atoms})^2}{200}$

+ 0.20 × number of O atoms.

Table 5.4

COMMON FRAGMENT IONS

All fragments listed bear + 1 charges. To be used in conjunction with Table 5.5. Not all members of homologous and isomeric series are given. The list is meant to be suggestive rather than exhaustive. Structural inferences are listed in parentheses.

m/z	(Structural Inference)
Ions*	
14	CH ₂
15	CH ₃
16	0
17	ОН
18	H_2O, NH_4
19	F, H ₃ O
26	$C \equiv N, C_2 H_2$
27	C ₂ H ₃
28	C_2H_4 , CO, N ₂ (air), CH=NH
29	C,H,, CHO
30	CH,NH,(RCH,NH,), NO
31	CH,OH(RCH,OH), OCH,
32	O ₂ (air)
33	SH, CH,F

34	H ₂ S
35	Cl (³⁷ Cl at 37)
36	HCI (H ³⁷ Cl at 38)
39	C,H,
40	$CH_2C = N$, Ar (air)
41	C_3H_5 , $CH_2C = N + H^a$, C_2H_2NH
42	C_3H_6, C_2H_2O
43	$C_{3}H_{7}, CH_{3}C = O, CH_{3}C = OG, (G = R, Ar, NH_{2}, OR, OH), C_{2}H_{5}N$ H
44	$CH_2C = O + H$ (Aldehydes, McLafferty Rearrangement), CH_3CHNH_2 , CO_2 , $NH_2C = O$ (RC = ONH_2), $(CH_3)_2N$
	CH ₃
45	CHOH, CH ₂ CH ₂ OH, CH ₂ OCH ₃ (RCH ₂ OCH ₃), O
	∥ COH,CH₃CHO+H(CH₃CHOHR)
46	NO,
47	CH ₂ SH (RCH ₂ SH), CH ₃ S
48	CH ₃ S+H
49	$CH_2Cl(CH_2^{37}Cl \text{ at } 51)$
51	CHF_2, C_4H_3
53	C ₄ H ₅
54	CH ₂ CH ₂ C=N
55	C_4H_7 , CH_2 =CHC=O
56	C ₄ H ₈
57	$C_4H_9, C_2H_5C = O$
	<u>,0</u>
58	CH_3-C + H, $C_2H_5CHNH_2$, $(CH_3)_2NCH_2$, $C_2H_5NHCH_2$, C_2H_2S CH ₂
59	$(CH_3)_2COH, CH_2OC_2H_5, C-OCH_3 (RCO_2CH_3).$
	$NH_2C = O + H,$
	CH
	CH ₃ OCHCH ₃ , CH ₃ CHCH ₂ OH, C ₂ H ₅ CHOH
	C_{13} C_{13} C_{13} C_{13} C_{11} C

Spectroscopic Data Chemistry

,

	~0
60	CH_2C +H, CH_2ONO
	ОН
	0
61	$CH_{3}^{\parallel}C-O+2H, CH_{2}CH_{2}SH, CH_{2}SCH_{3}$
65	C ₅ H ₅
66	$=C_{5}H_{6},H_{2}S_{2}(RSSR)$
67	C ₅ H ₇
68	$CH_2CH_2CH_2C\equiv N$
69	$C_{5}H_{9}$, CF_{3} , $CH_{3}CH=CHC=O$,
	$CH_2=C(CH_3)C=O$
70	C ₅ H ₁₀
71	$C_{5}H_{11}, C_{3}H_{7}C=0$
72	$C_{2}H_{5}C$ + H, $C_{3}H_{7}CHNH_{2}$, $(CH_{3})_{2}$ N=C=O, CH ₂
	$C_2H_5NHCHCH_3$ and isomers
73	Homologs of 59, $(CH_3)_3$ Si
	0
74	CH_2 -C-OCH ₃ + H
75	O O $\parallel = \parallel$ C-OC ₂ H ₅ + 2H, C ₂ H ₅ CO + 2H, CH ₂ SC ₂ H ₅ , (CH ₃) ₂ CSH, (CH ₃ O) ₂ CH, (CH ₃) ₂ SiOH
76	$C_6H_4(C_6H_5X, C_6H_4XY)$
77	C ₆ H ₅ (C ₆ H ₅ X)
78	$C_6H_5 + H$
79	$C_6H_5 + 2H$, Br (⁸¹ Br at 81)

91
$$\bigcirc CH_2(C_6H_3CH_2Br), \bigcirc CH + H, \bigcirc C + 2H,$$

 $(CH_2)_4 Cl[(CH_2)_4 {}^{37}Cl at 93]$ N
92 $\bigcirc CH_2, \bigcirc CH_2 + H,$
93 $CH_2Br(CH_2 {}^{81}Br at 95, RCH_2Br), C_7H_9,$
 $\bigcirc C = O, \bigcirc C_7H_9 (terpenes)$
94 $\bigcirc O + H, \bigcirc C = O$
95 $\bigcirc C + CH_2CH_2CH_2C=N$
96 $CH_2CH_2CH_2CH_2CH_2C=N$
97 $C_7H_{13}, \bigcirc CH_2$
98 $\bigcirc CH_2O + H$
99 $C_7H_{15}, C_6H_{11}O, \bigcirc O$
100 $C_4H_9C \stackrel{\bigcirc O}{\subset CH_2} + H, C_5H_{11}CHNH_2$

131
$$\dot{C_3F_5}$$
, O = CH=CH-C

135
$$(CH_2)_4 Br[(CH_2)_4^{\ 81}Br \text{ at } 137]$$

141 CH,I (RCH,I)

147
$$(CH_3)_2 Si = O - Si (CH_3)_3$$

^a Ions indicated as a fragments + nH(n = 1,2,3--) are ions that arise via rearrangement involving hydrogen transfer.

Table 5.5Common Fragments Lost

This list is suggestive rather than comprehensive. It should be used in conjunction with Table 5.4. All of these fragments are lost as neutral species.

Molecula	r
Ion Minu	s Fragment Lost Inference Structure
1	Н'
2	2H ·
15	CH ₃ •
16	$O(ArNO_2$, amine oxides, sulfoxides); NH_2 (carboxamides, sulfonamides)
17	HO'
18	H ₂ O (alcohols, aldehydes, ketones)
19	F*
20	HF
26	CH≡CH,*CH≡N
27	CH ₂ = CH [•] , HC=N (aromatic nitrites, nitrogen heterocycles)
28	$CH_2 = CH_2$, CO, (quinones) (HCN + H)
29	CH ₃ CH ₂ [•] , (ethyl ketones, ArCH ₂ CH ₂ CH ₃), [•] CHO
30	$NH_2CH_2^{\bullet}$, $CH_2O(ArOCH_3)$, $NO(ArNO_2)$, C_2H_6
31	[•] OCH ₃ (methyl esters), [•] CH ₂ OH, CH ₃ NH ₂
32	CH ₃ OH, S
33	HS^{\bullet} (thiols), (${}^{\bullet}CH_3$ and H_2O)
34	H ₂ S (thiols)
35	Cl•
36	HCl, 2H ₂ O
37	H_2Cl (or HCl + H)
38	$C_{3}H_{2}, C_{2}N, F_{2}$
39	C_3H_3 , HC_2N
40	CH ₃ C≡CH
41	CH ₂ =CHCH ₂ •

42
$$CH_2=CHCH_3, CH_2=C=0, H_2C=CH_2, NCO, NCNH_2$$

 0 0
 \parallel \parallel \parallel
43 $C_3H_7^*$ (propyl ketones, $ArCH_2-C_3H_7$), CH_3-C^* (methyl ketones, CH_3CG ,
where $G =$ various functional groups), $CH_2=CH-O^*$, $(CH_3^* and CH_2=CH_2)$, HCNO
44 $CH_2=CHOH, CO_2$ (esters, anhydrides), N₂O, CONH₂, NHCH₂CH₃
45 $CH_3CHOH, CH_2CH_2O^*$ (ethyl esters), CO_2H , $CH_3CH_2NH_2$
46 $(H_2O and CH_2=CH_2)$, $CH_3CH_2OH, *NO_2$ ($ArNO_2$)
47 CH_3S^*
48 $CH_3SH, SO(sulfoxides), O_3$
49 $*CH_2CI$
51 $*CHF_2$
52 C_4H_4, C_2N_2
53 C_4H_5
54 $CH_2=CH-CH=CH_2$
55 $CH_2=CHCHCH_3$
56 $CH_2=CHCH_2CH_3, CH_3CH=CHCH_3, 2CO$
57 $C_4H_5^*$ (butyl ketones), C_2H_2CO (ethyl ketones, $EtC = OG$,
 $G =$ various structural units)
58 $*NCS, (NO + CO), CH_3COCH_3, C_4H_{10}$
59 O O H
 \parallel \parallel \parallel $CH_3OC^*, CH_3-C-NH_2, $\overset{S}{\longrightarrow}$
60 $C_3H_7OH, CH_2=C(OH)_2$ (acetate esters)^a
61 $CH_3CH_2S^*, \overset{H}{\longrightarrow}$$

64	C_5H_4 , S_2 , SO_2
	CH ₃
68	∣ CH,=C–CH=CH,
69	CF ₁ , C ₅ H ₀
71	C ₅ H ₁₁ •
	0
77	
13	CH ₃ CH ₂ OC
74	C ₄ H ₉ OH
75	C ₆ H ₃
76	C_6H_4 , CS_2
77	C ₆ H ₅ , CS ₂ H
78	C_6H_6 , CS_2H_2 , C_5H_4N
79	Br^{\bullet}, C_5H_5N
80	HBr
85	•CCIF ₂
100	$CF_2 = CF_2$
119	$CF_3 - CF_2^{\bullet}$
122	C ₆ H ₅ COOH
127	I
128	HI

^aMclafferty Rearrangement

Problems:

(1) List the possible formulas of molecules with $M^+ = 100$. Assume that C, H and O may be present.

Strategy: A good approach to this kind of problem is to begin by calculating the possible hydrocarbon formulas. First divide the molecular weight by 12 to find the maximum number of carbons possible. Each carbon is equal in mass to 12 hydrogens, so the next step is to replace 1 C by 12H, giving another possible formula.

Oxygen containing formulas can be calculated by realising that one oxygen is equal in mass to CH_4 .

Ans.: Dividing M⁺ by 12 gives 100/12 = 8 (remainder 4), so a possible hydrocarbon formula is C₈H₄. Replacing 1 C by 12H gives the second possible hydrocarbon formula C₇H₁₆.

Starting with the hydrocarbon formula C_8H_4 and replacing CH_4 by O gives C_7O as possible (but unlikely) formula. Doing the same with C_7H_{16} gives $C_6H_{12}O$. Again replacing CH_4 by O gives $C_5H_8O_2$, and repeating the process a third time gives $C_4H_4O_3$. Thus, there are five likely formulas for a substance with MW = 100.

(2)) Write as many molecular formulas as you can for compound		an for compounds that
	have the following	g molecular ions in their	mass spectra. Assume
	that all the compo	unds contain C ¹ and H, a	nd that O may or may
	not be present.		
	(a) $M^+ = 86$,	(b) M ⁺ = 128,	(c) $M^+ = 156$
Ans.	(a) C_6H_{14}, C_5H_{10}	$C_4H_6O_2, C_3H_2O_3$	
	(b) C_9H_{20}, C_9H_4O	$C_{10}H_8, C_8H_{16}O, C_7H_{12}O$	0 ₂ , C ₆ H ₈ O ₃ , C ₅ H ₄ O ₄
	(c) $C_{11}H_{24}, C_{12}H_{12}$ $C_7H_8O_4, C_6H_4$,, C ₁₁ H ₈ O, C ₁₀ H ₂₀ O, C ₁₀ H ₄ O ₅	$O_2, C_9H_{16}O_2, C_8H_{12}O_3,$
(3)	What are the mas	ses of the charged fragm	nents produced in the
	following cleavage	e pathways?	
	(a) Alpha cleavag	ge of 2-pentanone (CH ₃ C	OCH ₂ CH ₂ CH ₃)
Ans.	43, 71		
	(b) Dehydration of	of cyclohexanol (hydroxy	cyclohexane)
Ans.	82		
	(c) McLafferty	rearrangement of 4-n	nethyl-2-pentanone
	[CH ₃ COCH ₂ CH(C	[H ₃) ₂]	
Ans.	58		
	(d) Aplha cleavag	e of triethylamine [(CH ₃)	CH ₂) ₃ N]
Ans.	86		

STRUCTURAL DATA OBTAINABLE FROM DIFFERENT SPECTRA

Characteristic and readily obtainable structural data from each type of spectrum are collected below:

UV	Conjugation, substituents on sp ² C atoms.
IR	Functional groups.
NMR	Carbon chain.
MS	Molecular formula, functional groups, carbon skeleton.

Details

UV	The following data can be obtained from a UV spectrum.
1.	The nature of conjugated system and substituents, from the empirical rules for calculation of λ_{max} of (a) polyenes, (b) enones and (c) aromatic carbonyl compounds.
2.	The presence of aromatic units from the λ_{max} 200 nm and λ_{max} 260 nm (benzenoid) bands.
3.	By comparing the shape of the spectrum of the unknown with spectra of known compounds it is possible to identify the nature of the chromophoric units (cf. model compounds).
4.	Weakly absorbing chomophores (i.e., simple ketones, sulphides etc., or $n \rightarrow \sigma^*$ or $n \rightarrow \pi^*$ transitions) are indicated by weak bands in the absence of strong chromophores.
IR	The IR spectrum is extremely useful for the identification of functional groups in the unknown. 'The tables given in the chapter on IR spectroscopy should be consulted. Briefly IR is helpful in identifying the following:
1.	OH;COOH;
2.	-NH,; -NH; -CONH,; -CONH:
3.	C=C; HC=C; -CN; C=C=C;
4.	Aromatic rings, nature of substitution in the ring.
5.	Carbonyl functions.
6.	Enes and their cis-trans stereochemistry.

7.	Alkyl units $-CH(CH_3)_2$; CH(CH ₃) ₃
	Note that absence of bands is also informative because if the functional group is present it must give its IR bands. The vibrations never stop.
NMR	The NMR spectrum gives valuable data about the carbon chain.
PMR	(Proton Magnetic Resonance) or ¹ HNMR. The following information can be obtained.
1.	The number of groups of equivalent protons and hence of the nature of C atoms (δ values) in the chain (whether CH ₃ , CH ₂ , CH, etc.). The integration gives the number of protons in each group of equivalent protons.
2.	The adjacent groups of protons (J, splitting patterns).
3.	Decoupling experiments identify the neighbouring groups of protons.
4.	NOE and J values indicate stereochemistry.
5.	Paramagnetic shift reagents simplify complex spectra.
¹³ CNMR	The following information can be obtained:
1.	The number of equivalent groups of C atoms.
2.	The number of H atoms attached to each C atom (off-resonance decoupling).
3.	Calculation of the chemical shifts of C atoms in the proposed structure and comparison with the observed values, for confirmation.
4.	Carbonyl functional groups.
	The NMR spectrum is the most useful spectrum because it can give almost the complete structure of the unknown compound which may need only marginal information for confirmation.
MS	The mass spectrum provides data, some of which cannot be obtained from other spectra.
1.	Accurate molecular weight and molecular fromula M^{+0} . This will be very valuable in those cases where only a small amount

of the unknown compound is available. Ion formulae can also be obtained from high resolution MS.

- The class of compounds to which the unknown belongs can be deduced from M + 1 abundance and the general appearance of the spectrum.
- 3.. Functional groups from high m/z peaks and characteristic ion series.
- 4. Information about the C-skeleton from fragment peaks.

Reference Books used:

- 1. Spectrometric Identification of Organic Compounds by Silverstein, Bassler, Morrill, 5/e (John Wiley & Sons. Inc.).
- 2. *Absorption Spectroscopy of Organic Molecules* by V.M. Parikh (Addison Wesley Publishing Company, California).
- Application of Absorption Spectroscopy of Organic Compounds by John R. Dyer (Prentice Hall of India Private Limited, New Delhi, 1991).
- Organic Spectroscopy by V.R. Dani. (Tata McGraw Hill Publishing Company Limited, New Delhi, 1995).

Index

Abietic acid, 7 Absorption frequencies of: alkenes, 45-46 aromatic homocyclic compounds, 47-49 common organic compounds, 27-34 Alcohols: ¹³C chemical shifts. 111-12 Alkenes and alkynes: 13C chemical shifts, 104-08 Amines: ¹³C chemical shifts, 114 Aromatic compounds: ¹³C chemical shifts, 108-11 Aromatic molecules: carbonyl compounds, 13-20 dienes, 7-8 enones, 10-13 polyenes, 8-9 Aromatic systems and derivatives: absorption characteristics, 16-18 Auxochrome substituents, 6

Branched chain alkanes, 134 Calculating absorption maxima of: aromatic molecules, 5-13 carbonyl compounds, 3-5 unsaturated compounds, 1-3 Carbonyl compounds, 3-4 Carboxylic acids, ester, chlorides, anhydreds, amides and nitriles: ¹³C chemical shits, 116-20 Chemical shifts, multiplicities and coupling constants, 86-88 Chemical shifts: alicyclic rings, 72 alkyne protons, 77 fused aromatic rings, 78 heteroaromatic rings, 79 heterocyclic rings, 72-73 methyl, methylene and methane protons, 65-67

Benzene chromophore, 5-6

Index

miscellanceous alkenes. 75-77 monosubstituted benzene rings proton, 77-78 substituent effects, 70-71 two/three functional groups, 68-70 unsaturated and aromatic systems, 73-75 Chromophore substituents, 6 Common fragmentation ions, 225-32 Common fragmentation lost, 233-35 Coupling constants, 122 Cross conjugation, 1 Cutoff wavelength, 19-20 Cyclic diene, 1

Dicarbonyl compounds, 12 Diene absorption: Woodword's and Fieser's rules, 2 Diens and triens: kinds of, 1-2 Different spectra: structural data obtainable, 237-39

Effects of chemical shifts on: alicyclic and heterocyclic rings, 73-80 protons on heteroatoms, 80-81 single functional groups, 65-67 two/three functional groups, 68-71 Enone and dienone absorption rules, 4-5 Enone: solvent correlations, 5 Ergosterol, 8 Ethers, acetols and epoxides: ¹³C chemical shifts, 112-13 Exact masses of isotopes, 129-30

Fragmentation process: alcohols, 137-40 aldehydes, 144-45 alkanes, 132-34 alkenes, 135-36 amides, 151-52 amines, 149-51 aromatic hydrocarbons, 136-37 carboxylic acids and esters, 147-49 ethens, 142-43 ketones, 142-47 phenols and other aromatic alcohols, 140-42

Halides: ¹³C chemical shifts, 113-14 Heteroannular diene, 2 Heteroatoms, 80-81 Homoannular diene, 2

Incremental shits of aromatic carbon atoms of monosaturated benzenes, 108-10 Incremental substituents effects, 102 Infrared absorption and structure of organic compounds: correlations, 34-35

Ketones and aldehydes: ¹³C chemical shifts, 115-16

Linear and branched alkanes: ¹³C chemical shifts, 94-104 Linear conjugation, 1 Mass spectroscopy, 128-235 Mass spectrum, 128 McLafferty rearrangements, 135, 136, 144, 147 Molecular ion, 128-29 Mulling oils, 58 Multiplicities, ¹³C chemical shifts and couplings of common NMR solvents, 123-24 NMR spectroscopy, 90-127 NMR table of correlations of chemical shifts of protons, 88-93 Ortho and meta substitution, 15 Oximes: ¹³C chemical shifts, 120 Para substitution, 14 Parameters of ¹³C chemical shifts, 100 Polycyclic aromatic compounds: absorption characteristics, 15 Polyenes, 3 Proton magnetic resonance spectroscopy, 64-93 Proton spin coupling constants, 81-85 Protons on heteroatoms.

80-81

Recognition of molecular ion peak, 131-32 Relative isotopic abundance of common elements, 130 Retro-Diels-Alder reaction, 135 Scott's rule for λ max of ET band, 6-7 Semicyclic diene, 1-2 Shielding constants, 68-69 Solvents and mulling oils: infrared transmission characteristics. 57-58 Some (1J_{CH}) values, 120-21 Some $({}^{2}J_{CH})$ values, 121-22 Spin coupling, 120-22 Stretching frequencies of: carbonyl compounds, 49-53 cyclic and acyclic systems, 47 Substituent constants, 74-75 Substituent effects on chemical shifts, 70-71

Table of ¹³C correlation for chemical classes, 124-27 Thiols, sulfides and disulfides: ¹³C chemical shifts, 114-15 Trans β-carotene, 8-9 Trans lycopene, 9

Ultraviolet spectroscopy, 1-20

Variations of carbonyl stretching band, 53-54

Vibration modes of amines and amino acids, 55-56